-
Notifications
You must be signed in to change notification settings - Fork 16
/
optimize_cage.py
410 lines (355 loc) · 20.5 KB
/
optimize_cage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
""" Optimize the initial cage for a new source shape """
from __future__ import print_function
from pprint import pprint
import traceback
import sys
import datetime
import shutil
import torch
import os
import numpy as np
import pymesh
from pytorch_points.misc import logger
from pytorch_points.network.operations import faiss_knn
from pytorch_points.network.geo_operations import mean_value_coordinates_3D, edge_vertex_indices
from pytorch_points.utils.pc_utils import load, save_ply, save_ply_with_face, center_bounding_box
from pytorch_points.utils.geometry_utils import get_edge_points
from pytorch_points.utils.pytorch_utils import weights_init, check_values, save_network, load_network, \
clamp_gradient_norm, tolerating_collate, clamp_gradient, fix_network_parameters
from pytorch_points.network.model_loss import MeshLaplacianLoss
import network2 as networks
from common import loadInitCage, build_dataset, deform_with_MVC, read_trimesh
from losses import MVCRegularizer
from option import DeformationOptions
from matplotlib.colors import Normalize
from matplotlib import cm
import openmesh as om
import pandas as pd
class MyOptions(DeformationOptions):
def initialize(self, parser):
parser.add_argument(
"--model", type=str, default="/home/mnt/points/data/MPI-FAUST/training/registrations/tr_reg_010.ply")
parser.add_argument("--use_cage", type=str,
help="path to optimized cage")
parser.add_argument("--opt_lap", action="store_true",
help="optimize deformed shape using laplacian")
return super().initialize(parser)
def parse(self):
super().parse()
assert(self.opt.source_model is not None), "source model is required for optimize_cage"
if not isinstance(self.opt.source_model, str):
self.opt.source_model = self.opt.source_model[0]
return self.opt
def visualize_correspondence(opt, source_shape, source_face, target_shape, target_face, corres_1, corres_2):
"""
source_shape (1,N,3)
source_face (1,F,3)
target_shape (1,N2,3)
target_face (1,F2,3)
corres_face_1 (P)
corres_face_2 (P)
"""
# save these points with color codes
P = corres_2.shape[0]
assert(corres_1.shape[0] == corres_2.shape[0])
corres_1 = corres_1.cpu().numpy().reshape(-1)
corres_2 = corres_2.cpu().numpy().reshape(-1)
normalize = Normalize(vmin=0, vmax=corres_1.shape[0])
cmap = cm.get_cmap("jet")
colors_picked = cmap(normalize(np.arange(P, dtype=np.float32)))[:, :3]
colors_source = np.ones((source_face.shape[1], 3), dtype=np.float32)
colors_source[corres_1, :] = colors_picked
save_ply_with_face(source_shape[0].cpu().detach().numpy(), source_face[0].cpu().detach().numpy(),
os.path.join(opt.log_dir, opt.subdir, "source_corr.ply"), colors_source)
colors_target = np.ones((target_face.shape[1], 3), dtype=np.float32)
colors_target[corres_2, :] = colors_picked
save_ply_with_face(target_shape[0].cpu().detach().numpy(), target_face[0].cpu().detach().numpy(),
os.path.join(opt.log_dir, opt.subdir, "target_corr.ply"), colors_target)
def optimize(opt):
"""
weights are the same with the original source mesh
target=net(old_source)
"""
# load new target
if opt.is_poly:
target_mesh = om.read_polymesh(opt.model)
else:
target_mesh = om.read_trimesh(opt.model)
target_shape_arr = target_mesh.points()
target_shape = target_shape_arr.copy()
target_shape = torch.from_numpy(
target_shape[:, :3].astype(np.float32)).cuda()
target_shape.unsqueeze_(0)
target_faces_arr = target_mesh.face_vertex_indices()
target_faces = target_faces_arr.copy()
target_faces = torch.from_numpy(
target_faces[:, :3].astype(np.int64)).cuda()
target_faces.unsqueeze_(0)
states = torch.load(opt.ckpt)
if "states" in states:
states = states["states"]
cage_v = states["template_vertices"].transpose(1, 2).cuda()
cage_f = states["template_faces"].cuda()
shape_v = states["source_vertices"].transpose(1, 2).cuda()
shape_f = states["source_faces"].cuda()
if os.path.isfile(opt.model.replace(os.path.splitext(opt.model)[1], ".picked")) and os.path.isfile(opt.source_model.replace(os.path.splitext(opt.source_model)[1], ".picked")):
new_label_path = opt.model.replace(os.path.splitext(opt.model)[1], ".picked")
orig_label_path = opt.source_model.replace(os.path.splitext(opt.source_model)[1], ".picked")
logger.info("Loading picked labels {} and {}".format(orig_label_path, new_label_path))
new_label = pd.read_csv(new_label_path, delimiter=" ",skiprows=1, header=None)
orig_label = pd.read_csv(orig_label_path, delimiter=" ",skiprows=1, header=None)
orig_label_name = orig_label.iloc[:,5]
new_label_name = new_label.iloc[:,5].tolist()
new_to_orig_idx = []
for i, name in enumerate(new_label_name):
matched_idx = orig_label_name[orig_label_name==name].index
if matched_idx.size == 1:
new_to_orig_idx.append((i, matched_idx[0]))
new_to_orig_idx = np.array(new_to_orig_idx)
if new_label.shape[1] == 10:
new_vidx = new_label.iloc[:,9].to_numpy()[new_to_orig_idx[:,0]]
target_points = target_shape[:, new_vidx, :]
else:
new_label_points = torch.from_numpy(new_label.iloc[:,6:9].to_numpy().astype(np.float32))
target_points = new_label_points.unsqueeze(0).cuda()
target_points, new_vidx, _ = faiss_knn(1, target_points, target_shape, NCHW=False)
target_points = target_points.squeeze(2) # B,N,3
new_label[9] = new_vidx.squeeze(0).squeeze(-1).cpu().numpy()
new_label.to_csv(new_label_path, sep=" ", header=[str(new_label.shape[0])]+[""]*(new_label.shape[1]-1), index=False)
target_points = target_points[:, new_to_orig_idx[:,0], :]
target_points = target_points.cuda()
source_shape, _ = read_trimesh(opt.source_model)
source_shape = torch.from_numpy(source_shape[None, :,:3]).float()
if orig_label.shape[1] == 10:
orig_vidx = orig_label.iloc[:,9].to_numpy()[new_to_orig_idx[:,1]]
source_points = source_shape[:, orig_vidx, :]
else:
orig_label_points = torch.from_numpy(orig_label.iloc[:,6:9].to_numpy().astype(np.float32))
source_points = orig_label_points.unsqueeze(0)
# find the closest point on the original meshes
source_points, new_vidx, _ = faiss_knn(1, source_points, source_shape, NCHW=False)
source_points = source_points.squeeze(2) # B,N,3
orig_label[9] = new_vidx.squeeze(0).squeeze(-1).cpu().numpy()
orig_label.to_csv(orig_label_path, sep=" ", header=[str(orig_label.shape[0])]+[""]*(orig_label.shape[1]-1), index=False)
source_points = source_points[:,new_to_orig_idx[:,1],:]
_, source_center, _ = center_bounding_box(source_shape[0])
source_points -= source_center
source_points = source_points.cuda()
# # shift target so that the belly match
# try:
# orig_bellyUp_idx = orig_label_name[orig_label_name=="bellUp"].index[0]
# orig_bellyUp = orig_label_points[orig_bellyUp_idx, :]
# new_bellyUp_idx = [i for i, i2 in new_to_orig_idx if i2==orig_bellyUp_idx][0]
# new_bellyUp = new_label_points[new_bellyUp_idx,:]
# target_points += (orig_bellyUp - new_bellyUp)
# except Exception as e:
# logger.warn("Couldn\'t match belly to belly")
# traceback.print_exc(file=sys.stdout)
# source_points[0] = center_bounding_box(source_points[0])[0]
elif not os.path.isfile(opt.model.replace(os.path.splitext(opt.model)[1], ".picked")) and \
os.path.isfile(opt.source_model.replace(os.path.splitext(opt.source_model)[1], ".picked")):
logger.info("Could not find {}. Assuming SMPL model".format(opt.model.replace(os.path.splitext(opt.model)[1], ".picked")))
source_shape, source_faces = read_trimesh(opt.source_model)
assert(source_faces.shape[0] == target_faces.shape[1]), \
"opt.model must be a SMPL model with {} faces and {} vertices. Otherwise a correspondence file {} must be present.".format(
source_faces.shape[0], source_shape.shape[0], opt.model.replace(os.path.splitext(opt.model)[1], ".picked"))
# align faces not vertices
orig_label_path = opt.source_model.replace(os.path.splitext(opt.source_model)[1], ".picked")
logger.info("Loading picked labels {}".format(orig_label_path))
orig_label = pd.read_csv(orig_label_path, delimiter=" ",skiprows=1, header=None)
source_shape = torch.from_numpy(source_shape[None, :, :3]).cuda().float()
source_faces = torch.from_numpy(source_faces[None, :, :3]).cuda().long()
idx = torch.from_numpy(orig_label.iloc[:,1].to_numpy()).long()
source_points = torch.gather(source_shape.unsqueeze(1).expand(-1, idx.numel(), -1, -1), 2, source_faces[:, idx, :, None].expand(-1, -1, -1, 3))
source_points = source_points.mean(dim=-2)
target_points = torch.gather(target_shape.unsqueeze(1).expand(-1, idx.numel(), -1, -1), 2, target_faces[:, idx, :, None].expand(-1, -1, -1, 3))
target_points = target_points.mean(dim=-2)
_, source_center, _ = center_bounding_box(source_shape[0])
source_points -= source_center
elif not os.path.isfile(opt.model.replace(os.path.splitext(opt.model)[1], ".picked")):
logger.info("Could not find {}. Assuming SMPL model".format(opt.model.replace(os.path.splitext(opt.model)[1], ".picked")))
source_shape, source_faces = read_trimesh(opt.source_model)
assert(source_faces.shape[0] == target_faces.shape[1]), \
"opt.model must be a SMPL model with {} faces and {} vertices. Otherwise a correspondence file {} must be present.".format(
source_faces.shape[0], source_shape.shape[0], opt.model.replace(os.path.splitext(opt.model)[1], ".picked"))
source_shape, source_faces = read_trimesh(opt.source_model)
_, source_center, _ = center_bounding_box(source_shape[0])
source_points -= source_center
source_shape = torch.from_numpy(source_shape[None, :, :3]).cuda().float()
source_faces = torch.from_numpy(source_faces[None, :, :3]).cuda().long()
# select a subset of faces, otherwise optimization is too slow
idx = torch.from_numpy(np.random.permutation(2048)).cuda().long()
source_points = torch.gather(source_shape.unsqueeze(1).expand(-1, source_faces.shape[1], -1, -1), 2, source_faces[:, idx,:, None].expand(-1, -1, -1, 3))
source_points = source_points.mean(dim=-2)
target_points = torch.gather(target_shape.unsqueeze(1).expand(-1, source_faces.shape[1], -1, -1), 2, target_faces[:,idx,: None].expand(-1, -1, -1, 3))
target_points = target_points.mean(dim=-2)
target_points = target_points[:, idx]
source_points = source_points[:, idx]
target_shape[0], target_center, target_scale = center_bounding_box(target_shape[0])
_, _, source_scale = center_bounding_box(shape_v[0])
# scale according y axis (body height)
target_scale_factor = (source_scale/target_scale)[0,1]
target_shape *= target_scale_factor
target_points -= target_center
target_points = (target_points*target_scale_factor).detach()
# make sure test use the normalized
target_shape_arr[:] = target_shape[0].cpu().numpy()
om.write_mesh(os.path.join(opt.log_dir, opt.subdir, os.path.splitext(
os.path.basename(opt.model))[0]+"_normalized.obj"), target_mesh)
opt.model = os.path.join(opt.log_dir, opt.subdir, os.path.splitext(
os.path.basename(opt.model))[0]+"_normalized.obj")
pymesh.save_mesh_raw(os.path.join(opt.log_dir, opt.subdir, "template-initial.obj"),
shape_v[0].cpu().numpy(), shape_f[0].cpu().numpy())
pymesh.save_mesh_raw(os.path.join(opt.log_dir, opt.subdir, "cage-initial.obj"),
cage_v[0].cpu().numpy(), cage_f[0].cpu().numpy())
save_ply(target_points[0].cpu().numpy(), os.path.join(
opt.log_dir, opt.subdir, "target_points.ply"))
save_ply(source_points[0].cpu().numpy(), os.path.join(
opt.log_dir, opt.subdir, "source_points.ply"))
logger.info("Optimizing for {} corresponding vertices".format(
target_points.shape[1]))
cage_init = cage_v.clone().detach()
lap_loss = MeshLaplacianLoss(torch.nn.MSELoss(reduction="none"), use_cot=True,
use_norm=True, consistent_topology=True, precompute_L=True)
mvc_reg_loss = MVCRegularizer(threshold=50, beta=1.0, alpha=0.0)
cage_v.requires_grad_(True)
optimizer = torch.optim.Adam([cage_v], lr=opt.lr, betas=(0.5, 0.9))
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, int(opt.nepochs*0.4), gamma=0.5, last_epoch=-1)
if opt.dim == 3:
weights_ref = mean_value_coordinates_3D(
source_points, cage_init, cage_f, verbose=False)
else:
raise NotImplementedError
for t in range(opt.nepochs):
optimizer.zero_grad()
weights = mean_value_coordinates_3D(
target_points, cage_v, cage_f, verbose=False)
loss_mvc = torch.mean((weights-weights_ref)**2)
# reg = torch.sum((cage_init-cage_v)**2, dim=-1)*1e-4
reg = torch.tensor(0.0).cuda()
if opt.clap_weight > 0:
reg = lap_loss(cage_init, cage_v, face=cage_f)*opt.clap_weight
reg = reg.mean()
if opt.mvc_weight > 0:
reg += mvc_reg_loss(weights)*opt.mvc_weight
loss = loss_mvc + reg
if (t+1) % 50 == 0:
print("t {}/{} mvc_loss: {} reg: {}".format(t, opt.nepochs, loss_mvc.item(), reg.item()))
if loss_mvc.item() < 5e-6:
break
loss.backward()
optimizer.step()
scheduler.step()
return cage_v, cage_f
def test_one(opt, cage_shape, new_source, new_source_face, new_target, new_target_face):
states = torch.load(opt.ckpt)
if "states" in states:
states = states["states"]
pymesh.save_mesh_raw(os.path.join(opt.log_dir, opt.subdir, "template-initial.ply"),
states["source_vertices"][0].transpose(
0, 1).detach().cpu(),
states["source_faces"][0].detach().cpu())
# states["template_vertices"] = cage_shape.transpose(1, 2)
# states["source_vertices"] = new_source.transpose(1, 2)
# states["source_faces"] = new_source_face
pymesh.save_mesh_raw(os.path.join(opt.log_dir, opt.subdir, "template-Sa.ply"),
new_source[0].detach().cpu(), new_source_face[0].detach().cpu())
pymesh.save_mesh_raw(os.path.join(opt.log_dir, opt.subdir, "template-Sb.ply"),
new_target[0].detach().cpu(), new_target_face[0].detach().cpu())
net = networks.FixedSourceDeformer(opt, 3, opt.num_point, bottleneck_size=512,
template_vertices=cage_shape.transpose(1, 2), template_faces=states["template_faces"].cuda(),
source_vertices=new_source.transpose(1, 2), source_faces=new_source_face).cuda()
net.eval()
load_network(net, states)
outputs = net(new_target.transpose(1, 2).contiguous())
deformed = outputs["deformed"]
pymesh.save_mesh_raw(os.path.join(opt.log_dir, opt.subdir, "template-Sab.ply"),
deformed[0].detach().cpu(), new_target_face[0].detach().cpu())
def test_all(opt, new_cage_shape):
opt.phase = "test"
opt.target_model = None
print(opt.model)
if opt.is_poly:
source_mesh = om.read_polymesh(opt.model)
else:
source_mesh = om.read_trimesh(opt.model)
dataset = build_dataset(opt)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, drop_last=False,
collate_fn=tolerating_collate,
num_workers=0, worker_init_fn=lambda id: np.random.seed(np.random.get_state()[1][0] + id))
states = torch.load(opt.ckpt)
if "states" in states:
states = states["states"]
# states["template_vertices"] = new_cage_shape.transpose(1, 2)
# states["source_vertices"] = new_source.transpose(1,2)
# states["source_faces"] = new_source_face
# new_source_face = states["source_faces"]
om.write_mesh(os.path.join(opt.log_dir, opt.subdir,
"template-Sa.ply"), source_mesh)
net = networks.FixedSourceDeformer(opt, 3, opt.num_point, bottleneck_size=opt.bottleneck_size,
template_vertices=states["template_vertices"], template_faces=states["template_faces"].cuda(),
source_vertices=states["source_vertices"], source_faces=states["source_faces"]).cuda()
print(net)
load_network(net, states)
source_points = torch.from_numpy(
source_mesh.points().copy()).float().cuda().unsqueeze(0)
with torch.no_grad():
# source_face = net.source_faces.detach()
for i, data in enumerate(dataloader):
data = dataset.uncollate(data)
target_shape, target_filename = data["target_shape"], data["target_file"]
logger.info("", data["target_file"][0])
sample_idx = None
if "sample_idx" in data:
sample_idx = data["sample_idx"]
outputs = net(target_shape.transpose(1, 2), cage_only=True)
if opt.d_residual:
cage_offset = outputs["new_cage"]-outputs["cage"]
outputs["cage"] = new_cage_shape
outputs["new_cage"] = new_cage_shape+cage_offset
deformed = deform_with_MVC(outputs["cage"], outputs["new_cage"], outputs["cage_face"].expand(
outputs["cage"].shape[0], -1, -1), source_points)
for b in range(deformed.shape[0]):
t_filename = os.path.splitext(target_filename[b])[0]
source_mesh_arr = source_mesh.points()
source_mesh_arr[:] = deformed[0].cpu().detach().numpy()
om.write_mesh(os.path.join(
opt.log_dir, opt.subdir, "template-{}-Sab.obj".format(t_filename)), source_mesh)
pymesh.save_mesh_raw(os.path.join(opt.log_dir, opt.subdir, "template-{}-Sb.ply".format(t_filename)),
data["target_mesh"][b].detach().cpu(), data["target_face"][b].detach().cpu())
pymesh.save_mesh_raw(
os.path.join(opt.log_dir, opt.subdir, "template-{}-cage1.ply".format(t_filename)),
outputs["cage"][b].detach().cpu(), outputs["cage_face"][b].detach().cpu(),
)
pymesh.save_mesh_raw(
os.path.join(opt.log_dir, opt.subdir, "template-{}-cage2.ply".format(t_filename)),
outputs["new_cage"][b].detach().cpu(), outputs["cage_face"][b].detach().cpu(),
)
if i % 20 == 0:
logger.success("[{}/{}] Done".format(i, len(dataloader)))
dataset.render_result(os.path.join(opt.log_dir, opt.subdir))
if __name__ == "__main__":
parser = MyOptions()
opt = parser.parse()
opt.log_dir = os.path.dirname(opt.ckpt)
os.makedirs(os.path.join(opt.log_dir, opt.subdir), exist_ok=True)
if opt.use_cage is None:
# optimize initial cage for the new target
cage_v, cage_f = optimize(opt)
pymesh.save_mesh_raw(os.path.join(opt.log_dir, opt.subdir, "optimized_template_cage.ply"),
cage_v[0].detach().cpu(), cage_f[0].detach().cpu())
else:
cage_v, cage_f = read_trimesh(opt.use_cage)
cage_v = torch.from_numpy(cage_v[:, :3].astype(np.float32)).cuda()
cage_f = torch.from_numpy(cage_f[:, :3].astype(np.int64)).cuda()
cage_v.unsqueeze_(0)
cage_f.unsqueeze_(0)
# # test using the new source and initial cage
# target_shape_pose, target_face_pose, _ = read_trimesh("/home/mnt/points/data/MPI-FAUST/training/registrations/tr_reg_002.ply")
# target_shape_pose = torch.from_numpy(target_shape_pose[:,:3].astype(np.float32)).cuda()
# target_face_pose = torch.from_numpy(target_face_pose[:,:3].astype(np.int64)).cuda()
# target_shape_pose, _, _ = center_bounding_box(target_shape_pose)
# target_shape_pose.unsqueeze_(0)
# target_face_pose.unsqueeze_(0)
# test_one(opt, cage_v, target_shape, target_face, target_shape_pose, target_face_pose)
test_all(opt, cage_v)