forked from scylladb/scylla-cluster-tests
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sla_per_user_system_test.py
975 lines (833 loc) · 52.2 KB
/
sla_per_user_system_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
#!/usr/bin/env python
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
#
# See LICENSE for more details.
#
# Copyright (c) 2016 ScyllaDB
import time
from pkg_resources import parse_version
from longevity_test import LongevityTest
from sdcm.db_stats import PrometheusDBStats
from sdcm.es import ES
from sdcm.sct_events import Severity
from sdcm.sct_events.workload_prioritisation import WorkloadPrioritisationEvent
from sdcm.utils.version_utils import ComparableScyllaVersion
from test_lib.sla import ServiceLevel, Role, User
from sdcm.utils.features import is_tablets_feature_enabled
# pylint: disable=too-many-public-methods
class SlaPerUserTest(LongevityTest):
"""
Test SLA per user feature using cassandra-stress.
"""
STRESS_WRITE_CMD = 'cassandra-stress write cl=QUORUM n={n} -schema' \
' \'replication(strategy=NetworkTopologyStrategy,replication_factor=3)\' ' \
'-mode cql3 native user={user} password={password} -rate threads={threads}'
STRESS_WRITE_DURATION_CMD = 'cassandra-stress write cl=ALL duration={duration}' \
' -schema \'replication(strategy=NetworkTopologyStrategy,replication_factor=3)\' ' \
'-mode cql3 native user={user} password={password} -rate threads={threads} ' \
'throttle=10000/s -pop seq={pop}'
STRESS_READ_CMD = 'cassandra-stress read cl=ALL duration={duration} -mode connectionsPerHost=16 cql3 native user={user} ' \
'password={password} -rate threads={threads} -pop {pop}'
STRESS_MIXED_CMD = r"cassandra-stress mixed ratio\(write={write_ratio},read={write_ratio}\) cl=QUORUM " \
"duration={duration} " \
"-mode cql3 native user={user} password={password} -rate threads={threads} -pop {pop} "
DEFAULT_USER = 'cassandra'
DEFAULT_USER_PASSWORD = 'cassandra'
DEFAULT_USER_SLA = 'sla_cassandra'
DEFAULT_SHARES = 1000
VALID_DEVIATION_PRC = 10
MIN_CPU_UTILIZATION = 97
WORKLOAD_LATENCY = 'latency'
WORKLOAD_THROUGHPUT = 'throughput'
CACHE_ONLY_LOAD = 'cache_only'
DISK_ONLY_LOAD = 'disk_only'
MIXED_LOAD = 'mixed'
WORKLOAD_TYPES_INDEX = "workload_tests"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.prometheus_stats = None
self.num_of_partitions = 50000000
self.backgroud_task = None
self.class_users = {}
self.connection_cql = None
self._comparison_results = {}
self._es = ES()
def prepare_schema(self):
self.prometheus_stats = PrometheusDBStats(host=self.monitors.nodes[0].external_address)
self.connection_cql = self.db_cluster.cql_connection_patient(
node=self.db_cluster.nodes[0], user=self.DEFAULT_USER, password=self.DEFAULT_USER_PASSWORD)
session = self.connection_cql.session
return session
def create_test_data_and_wait_no_compaction(self, rows_amount=None):
# Prefill data before tests
if rows_amount is not None:
self.num_of_partitions = rows_amount
write_cmd = self.STRESS_WRITE_CMD.format(n=self.num_of_partitions, user=self.DEFAULT_USER,
password=self.DEFAULT_USER_PASSWORD,
threads=250)
self.run_stress_and_verify_threads(params={'stress_cmd': write_cmd,
'prefix': 'preload-',
'stats_aggregate_cmds': False})
self.wait_no_compactions_running(n=120)
@staticmethod
def role_to_scheduler_group(test_users, scheduler_shares):
for role, shares in test_users.items():
for scheduler_group, sg_shares in scheduler_shares.items():
if shares[0] in sg_shares:
test_users[role].append(scheduler_group)
break
return test_users
def validate_scheduler_runtime(self, start_time, end_time, read_users, expected_ratio):
roles_with_shares = {user['role'].name: [user['service_level'].shares] for user in read_users}
# TODO: ask Eliran do we really need validate it by node?
for node_ip in self.db_cluster.get_node_private_ips():
# Temporary solution
scheduler_shares = self.prometheus_stats.get_scylla_scheduler_shares_per_sla(start_time, end_time, node_ip)
self.log.debug('SCHEDULERS SHARES FROM PROMETHEUS: {}'.format(scheduler_shares))
# this default scheduler that is not under test - ignore it
if 'sl:default' in scheduler_shares:
scheduler_shares.pop('sl:default')
test_users_to_sg = self.role_to_scheduler_group(test_users=roles_with_shares,
scheduler_shares=scheduler_shares)
self.log.debug('ROLE - SERVICE LEVEL - SCHEDULER: {}'.format(test_users_to_sg))
# End Temporary solution
# Query 'scylla_scheduler_runtime_ms' from prometheus. If no data returned, try to increase the step time
# and query again
for step in ['30s', '45s', '60s', '120s']:
self.log.debug("Query 'scylla_scheduler_runtime_ms' on the node %s with irate step %s ", node_ip, step)
if shards_time_per_sla := self.prometheus_stats.get_scylla_scheduler_runtime_ms(
start_time, end_time, node_ip, irate_sample_sec=step):
break
# TODO: follow after this issue (prometheus return empty answer despite the data exists),
# if it is reproduced
# if not (shards_time_per_sla and scheduler_shares):
# # Set this message as WARNING because I found that prometheus return empty answer despite the data
# # exists (I run this request manually and got data). Prometheus request doesn't fail, it succeeded but
# # empty, like:
# # {'status': 'success', 'data': {'resultType': 'matrix', 'result': []}}
# WorkloadPrioritisationEvent.EmptyPrometheusData(message=f'Failed to get scheduler_runtime data from '
# f'Prometheus for node {node_ip}',
# severity=Severity.WARNING).publish()
# continue
runtime_per_role = {}
for rolename, val in test_users_to_sg.items():
if val[1] in shards_time_per_sla[node_ip]:
runtime_per_role[rolename] = sum(shards_time_per_sla[node_ip][val[1]]) / \
len(shards_time_per_sla[node_ip][val[1]])
else:
runtime_per_role[rolename] = 0
self.log.debug('RUN TIME PER ROLE: {}'.format(runtime_per_role))
actual_shares_ratio = self.calculate_metrics_ratio_per_user(two_users_list=read_users,
metrics=runtime_per_role)
self.validate_deviation(expected_ratio=expected_ratio, actual_ratio=actual_shares_ratio,
msg=f'Validate scheduler CPU runtime on the node {node_ip}. '
f'Run time per role: {runtime_per_role}')
@staticmethod
def validate_ratio(expected_ratio, actual_ratio, msg):
if not (expected_ratio and actual_ratio):
WorkloadPrioritisationEvent.RatioValidationEvent(
message=f'Can\'t compare expected and actual shares ratio. Expected: {expected_ratio}. '
f'Actual: {actual_ratio}', severity=Severity.ERROR).publish()
elif expected_ratio <= actual_ratio:
WorkloadPrioritisationEvent.RatioValidationEvent(
message=f'{msg}. Actual ratio ({actual_ratio}) is as expected (more or equal then expected ratio '
f'{expected_ratio})',
severity=Severity.NORMAL).publish()
else:
WorkloadPrioritisationEvent.RatioValidationEvent(
message=f'{msg}. Actual ratio ({actual_ratio}) is less then expected ratio ({expected_ratio})',
severity=Severity.ERROR).publish()
def validate_deviation(self, expected_ratio, actual_ratio, msg):
dev = self.calculate_deviation(expected_ratio, actual_ratio)
if dev is None:
WorkloadPrioritisationEvent.RatioValidationEvent(
message=f'Can\'t compare expected and actual shares ratio. Expected: {expected_ratio}. '
f'Actual: {actual_ratio}', severity=Severity.ERROR).publish()
return False
elif dev > self.VALID_DEVIATION_PRC:
WorkloadPrioritisationEvent.RatioValidationEvent(
message=f'{msg}. Actual ratio ({actual_ratio}) is not as expected ({expected_ratio})',
severity=Severity.ERROR).publish()
return False
else:
WorkloadPrioritisationEvent.RatioValidationEvent(
message=f'{msg}. Actual ratio ({actual_ratio}) is as expected ({expected_ratio})',
severity=Severity.NORMAL).publish()
return True
@staticmethod
def calculate_deviation(first, second):
if first and second:
_first, _second = (first, second) if first > second else (second, first)
dev = float(abs(_first - _second) * 100 / _second)
return dev
return None
@staticmethod
def calculate_metrics_ratio_per_user(two_users_list, metrics=None): # pylint: disable=invalid-name
"""
:param metrics: calculate ratio for specific Scylla or cassandra-stress metrics (ops, scheduler_runtime etc..).
If metrics name is not defined - ration will be calculated for service_shares
"""
if two_users_list[0]['service_level'].shares > two_users_list[1]['service_level'].shares:
high_shares_user = two_users_list[0]
low_shares_user = two_users_list[1]
else:
high_shares_user = two_users_list[1]
low_shares_user = two_users_list[0]
if metrics:
high_shares_metrics = metrics[high_shares_user['role'].name]
low_shares_metrics = metrics[low_shares_user['role'].name]
else:
high_shares_metrics = high_shares_user['service_level'].shares
low_shares_metrics = low_shares_user['service_level'].shares
if not high_shares_metrics or not low_shares_metrics:
return None
return float(high_shares_metrics) / float(low_shares_metrics)
def run_stress_and_verify_threads(self, params=None):
read_queue = []
self._run_all_stress_cmds(read_queue, params=params)
for queue in read_queue:
self.verify_stress_thread(cs_thread_pool=queue)
return read_queue
def one_run_c_s_stats(self, read_run, user_name, statistic_name):
res = self.get_stress_results(queue=read_run, store_results=False)
stat_rate, username = None, None
if res:
stat_rate = res[0].get(statistic_name)
username = res[0].get('username')
if not (stat_rate and username):
self.log.error("Stress statistics are not received for user %s. Can't complete the test", user_name)
return None
return stat_rate, username
def get_c_s_stats(self, read_queue, users, statistic_name):
role_names = [user['role'].name for user in users]
results = {}
for i, read in enumerate(read_queue):
stat_rate, username = self.one_run_c_s_stats(read_run=read, user_name=role_names[i],
statistic_name=statistic_name)
if stat_rate is None:
return stat_rate
self.assertEqual(username, role_names[i],
msg=f'Expected that stress was run with user "{role_names[i]}" but it was "{username}"')
results[username] = float(stat_rate)
return results
def validate_if_scylla_load_high_enough(self, start_time, wait_cpu_utilization): # pylint: disable=invalid-name
end_time = int(time.time())
scylla_load = self.prometheus_stats.get_scylla_reactor_utilization(start_time=start_time, end_time=end_time)
if scylla_load < wait_cpu_utilization:
WorkloadPrioritisationEvent.CpuNotHighEnough(
f"Load {scylla_load} isn't high enough(expected at least {wait_cpu_utilization}). "
f"The test results may be not correct.", severity=Severity.ERROR).publish()
return False
return True
def clean_auth(self, entities_list_of_dict):
for entity in entities_list_of_dict:
service_level = entity.get('service_level')
role = entity.get('role')
user = entity.get('user')
if user:
user.drop()
if role:
role.drop()
if service_level:
service_level.drop()
self.backgroud_task = None
self.connection_cql.cluster.shutdown()
def warm_up_cache_before_test(self, max_key_for_read, stress_duration):
read_cmds = [self.STRESS_READ_CMD.format(n=self.num_of_partitions, user=self.DEFAULT_USER,
password=self.DEFAULT_USER,
pop="seq=1..%d" % max_key_for_read,
duration='%dm' % stress_duration,
threads=200)
]
self.run_stress_and_verify_threads(params={'stress_cmd': read_cmds})
# pylint: disable=too-many-arguments, too-many-locals
def define_read_cassandra_stress_command(self,
role: Role, load_type: str,
c_s_workload_type: str,
threads: int, stress_duration_min: int,
max_rows_for_read: int = None,
stress_command: str = STRESS_READ_CMD,
throttle: int = 20000, **kwargs):
"""
:param role: Role object
:param load_type: cache_only/disk_only/mixed
:param c_s_workload_type: latency: with ops restriction - using throttle
or
throughput: no restriction
"""
def latency():
return '%d throttle=%d/s' % (threads, throttle)
def throughput(): # pylint: disable=unused-variable
return threads
def cache_only(max_rows_for_read): # pylint: disable=unused-variable
if not max_rows_for_read:
max_rows_for_read = int(self.num_of_partitions * 0.3)
return 'seq=1..%d' % max_rows_for_read
# Read from cache and disk
def mixed(max_rows_for_read): # pylint: disable=unused-variable
if not max_rows_for_read:
max_rows_for_read = self.num_of_partitions
return "'dist=gauss(1..%d, %d, %d)'" % (max_rows_for_read,
int(max_rows_for_read / 2),
int(max_rows_for_read * 0.05))
def disk_only(max_rows_for_read): # pylint: disable=unused-variable
if not max_rows_for_read:
max_rows_for_read = int(self.num_of_partitions * 0.3)
return 'seq=%d..%d' % (max_rows_for_read, max_rows_for_read+int(self.num_of_partitions*0.25))
rate = locals()[c_s_workload_type]() # define -rate for c-s command depend on workload type
pop = locals()[load_type](max_rows_for_read) # define -pop for c-s command depend on load type
params = {'n': self.num_of_partitions, 'user': role.name, 'password': role.password, 'pop': pop,
'duration': '%dm' % stress_duration_min, 'threads': rate}
if kwargs:
params.update(kwargs['kwargs'])
c_s_cmd = stress_command.format(**params)
self.log.info("Created cassandra-stress command: %s", c_s_cmd)
return c_s_cmd
@staticmethod
def attach_service_level(auths_list):
for auth in auths_list:
auth["role"].attach_service_level(auth["service_level"])
def test_read_throughput_1to5_ratio(self):
"""
Basic test
- Add SLA and grant to user (before any load)
- user190 with 190 shares
- user950 with 950 shares
- Each user runs load from own loader (round robin)
- Expect OPS ratio between two loads is 1:5 (e.g. 190:950)
- Expect scheduler run time between two loads is 1:5 (e.g. 190:950)
Load from cache
"""
# In ideal expected ratio between two users is 5.0.
# Based on reality change it to 3.5
# https://github.com/scylladb/scylla-cluster-tests/pull/4943#issuecomment-1168507500
# http://13.48.103.68/test/71402aa7-051b-4803-a6b4-384529680fb7/runs?additionalRuns[]=1adf34d1-15cf-4973-80ce-9de130be0b09
expected_shares_ratio = 3.5
release = parse_version(self.db_cluster.nodes[0].scylla_version.replace("~", "-")).release[0]
if release >= 2023:
# Running the test with 2023.1 - ratio is improved
expected_shares_ratio = 4.2
self._two_users_load_througput_workload(shares=[190, 950], load=self.MIXED_LOAD,
expected_shares_ratio=expected_shares_ratio)
def _two_users_load_througput_workload(self, shares, load, expected_shares_ratio=None):
session = self.prepare_schema()
if is_tablets_feature_enabled(session=session):
self.run_pre_create_keyspace()
# after several test runs with Tablets decided to decrease by half of the percent(usually tests show about 96.8 - 97.5)
# due to unbalanced shards utilization with tablets(particular tablet belong to particular shard)
# during gauss distribution read
self.MIN_CPU_UTILIZATION = 96.5
self.create_test_data_and_wait_no_compaction()
# Define Service Levels/Roles/Users
read_users = []
for share in shares:
read_users.append({'user': User(session=session, name='user%d' % share, password='user%d' % share,
superuser=True).create(),
'role': Role(session=session, name='role%d' % share, password='role%d' % share,
login=True, superuser=True).create(),
'service_level': ServiceLevel(session=session, name='sla%d' % share,
shares=share).create()})
self.attach_service_level(auths_list=read_users)
# Wait that service levels are propagated to all nodes
time.sleep(10)
expected_shares_ratio = (expected_shares_ratio or
self.calculate_metrics_ratio_per_user(two_users_list=read_users))
stress_duration = 10 # minutes
read_cmds = [self.define_read_cassandra_stress_command(role=read_users[0]["role"],
load_type=load,
c_s_workload_type=self.WORKLOAD_THROUGHPUT,
threads=1000,
stress_duration_min=stress_duration),
self.define_read_cassandra_stress_command(role=read_users[1]["role"],
load_type=load,
c_s_workload_type=self.WORKLOAD_THROUGHPUT,
threads=1000,
stress_duration_min=stress_duration)
]
try:
# Let to cassandra-stress to warm up the load before get statistics (add 60 sec to start time)
start_time = time.time() + 60
read_queue = self.run_stress_and_verify_threads(params={'stress_cmd': read_cmds, 'round_robin': True})
results = self.get_c_s_stats(read_queue=read_queue, users=read_users, statistic_name='op rate')
self.validate_if_scylla_load_high_enough(start_time=start_time,
wait_cpu_utilization=self.MIN_CPU_UTILIZATION)
end_time = time.time()
self.validate_scheduler_runtime(start_time=start_time, end_time=end_time,
read_users=read_users, expected_ratio=expected_shares_ratio)
self.assertTrue(results, msg='Not received cassandra-stress results')
self.log.debug('Validate cassandra-stress ops deviation')
actual_shares_ratio = self.calculate_metrics_ratio_per_user(two_users_list=read_users, metrics=results)
self.validate_ratio(expected_ratio=expected_shares_ratio,
actual_ratio=actual_shares_ratio, msg='Validate cassandra-stress ops')
finally:
self.clean_auth(entities_list_of_dict=read_users)
def test_read_throughput_vs_latency_cache_and_disk(self): # pylint: disable=invalid-name
"""
Test when one user run load with high latency and another - with high througput
The load is run on the full data set (that is read from both the cache and the disk)
Throughput - latency test:
- Add SLA and grant to user (before any load)
- user190 with 190 shares
- user950 qith 950 shares
- Each user runs load from own loader (round robin):
- user950 runs load with throttle
- user190 runs load with high throughput
Expected results: latency 99th of user950 workload when it runs in parallel with workload of user190 is not
significant increased relatively to latency of runed alone user950 workload
"""
stress_duration = 5 # minutes
shares = [190, 950]
read_users = []
# Select part of the record to warm the cache (all this data will be in the cache).
# This amount of data will be read during the test from cache
max_key_for_read = int(self.num_of_partitions*0.5)
session = self.prepare_schema()
self.create_test_data_and_wait_no_compaction()
# Define Service Levels/Roles/Users
for share in shares:
read_users.append({'user': User(session=session, name='user%d' % share, password='user%d' % share,
superuser=True).create(),
'role': Role(session=session, name='role%d' % share, password='role%d' % share,
login=True, superuser=True).create(),
'service_level': ServiceLevel(session=session, name='sla%d' % share,
shares=share).create()})
self.attach_service_level(auths_list=read_users)
# Define stress commands
read_cmds = {'throughput': self.define_read_cassandra_stress_command(role=read_users[0]["role"],
load_type=self.MIXED_LOAD,
c_s_workload_type=self.WORKLOAD_THROUGHPUT,
threads=200,
stress_duration_min=stress_duration,
max_rows_for_read=max_key_for_read),
'latency': self.define_read_cassandra_stress_command(role=read_users[1]["role"],
load_type=self.MIXED_LOAD,
c_s_workload_type=self.WORKLOAD_LATENCY,
threads=250,
stress_duration_min=stress_duration,
max_rows_for_read=max_key_for_read),
'latency_throughput': self.define_read_cassandra_stress_command(
role=read_users[1]["role"],
load_type=self.MIXED_LOAD,
c_s_workload_type=self.WORKLOAD_THROUGHPUT,
threads=1000,
stress_duration_min=stress_duration,
max_rows_for_read=max_key_for_read)
}
# TODO: improvement_expected number and calculation of actual improvement was set by Eliran for cache only
# test. Should be adjusted for this test
improvement_expected = 1.8
self._throughput_latency_tests_run(read_users=read_users, read_cmds=read_cmds,
latency_user=read_users[1], improvement_expected=improvement_expected)
def test_read_throughput_vs_latency_cache_only(self): # pylint: disable=invalid-name
"""
Test when one user run load with high latency and another - with high througput
The load is run on the data set that fully exists in the cache
Throughput - latency test:
- Add SLA and grant to user (before any load)
- user190 with 190 shares
- user950 qith 950 shares
- Each user runs load from own loader (round robin):
- user950 runs load with throttle
- user190 runs load with high throughput
Expected results: latency 99th of user950 workload when it runs in parallel with workload of user190 is not
significant increased relatively to latency of run alone user950 workload
"""
stress_duration = 5 # minutes
shares = [190, 950]
# Select part of the record to warm the cache (all this data will be in the cache).
# This amount of data will be read during the test from cache
max_key_for_read = int(self.num_of_partitions*0.5)
read_users = []
session = self.prepare_schema()
self.create_test_data_and_wait_no_compaction()
# Warm up the cache to guarantee the read will be from disk
self.warm_up_cache_before_test(max_key_for_read=max_key_for_read, stress_duration=30)
# Define Service Levels/Roles/Users
for share in shares:
read_users.append({'user': User(session=session, name='user%d' % share, password='user%d' % share,
superuser=True).create(),
'role': Role(session=session, name='role%d' % share,
password='role%d' % share, login=True, superuser=True).create(),
'service_level': ServiceLevel(session=session, name='sla%d' % share,
shares=share).create()})
self.attach_service_level(auths_list=read_users)
read_cmds = {'throughput': self.define_read_cassandra_stress_command(role=read_users[0]["role"],
load_type=self.CACHE_ONLY_LOAD,
c_s_workload_type=self.WORKLOAD_THROUGHPUT,
threads=950,
stress_duration_min=stress_duration,
max_rows_for_read=max_key_for_read),
'latency': self.define_read_cassandra_stress_command(role=read_users[1]["role"],
load_type=self.CACHE_ONLY_LOAD,
c_s_workload_type=self.WORKLOAD_LATENCY,
threads=1000,
stress_duration_min=stress_duration,
max_rows_for_read=max_key_for_read),
'latency_throughput': self.define_read_cassandra_stress_command(
role=read_users[1]["role"],
load_type=self.CACHE_ONLY_LOAD,
c_s_workload_type=self.WORKLOAD_THROUGHPUT,
threads=1000,
stress_duration_min=stress_duration,
max_rows_for_read=max_key_for_read)
}
# improvement_expected number and calculation of actual improvement was set by Eliran
improvement_expected = 1.8
self._throughput_latency_tests_run(read_users=read_users, read_cmds=read_cmds,
latency_user=read_users[1], improvement_expected=improvement_expected)
def test_read_throughput_vs_latency_disk_only(self): # pylint: disable=invalid-name
"""
Test when one user run load with high latency and another - with high througput
The load is run on the data set that fully exists in the cache
Throughput - latency test:
- Add SLA and grant to user (before any load)
- user190 with 190 shares
- user950 qith 950 shares
- Each user runs load from own loader (round robin):
- user950 runs load with throttle
- user190 runs load with high throughput
Expected results: latency 99th of user950 workload when it runs in parallel with workload of user190 is not
significant increased relatively to latency of runed alone user950 workload
"""
stress_duration = 5 # minutes
session = self.prepare_schema()
self.create_test_data_and_wait_no_compaction()
for node in self.db_cluster.nodes:
node.stop_scylla_server(verify_up=False, verify_down=True)
node.start_scylla_server(verify_up=True, verify_down=False)
# Select part of the record to warm the cache (all this data will be in the cache).
# cassandra-stress "-pop" parameter will start from more then "max_key_for_cache" row number
# (for read from the disk)
max_key_for_read = int(self.num_of_partitions*0.25)
# Warm up the cache to guarantee the read will be from disk
self.warm_up_cache_before_test(max_key_for_read=max_key_for_read, stress_duration=30)
# Define Service Levels/Roles/Users
shares = [190, 950]
read_users = []
for share in shares:
read_users.append({'user': User(session=session, name='user%d' % share, password='user%d' % share,
superuser=True).create(),
'role': Role(session=session, name='role%d' % share, password='role%d' % share,
login=True, superuser=True).create(),
'service_level': ServiceLevel(session=session, name='sla%d' % share,
shares=share).create()})
self.attach_service_level(auths_list=read_users)
read_cmds = {'throughput': self.define_read_cassandra_stress_command(role=read_users[0]["role"],
load_type=self.DISK_ONLY_LOAD,
c_s_workload_type=self.WORKLOAD_THROUGHPUT,
threads=200,
stress_duration_min=stress_duration,
max_rows_for_read=max_key_for_read * 2),
'latency': self.define_read_cassandra_stress_command(role=read_users[1]["role"],
load_type=self.DISK_ONLY_LOAD,
c_s_workload_type=self.WORKLOAD_LATENCY,
threads=250,
stress_duration_min=stress_duration,
max_rows_for_read=max_key_for_read*3),
'latency_only': self.define_read_cassandra_stress_command(role=read_users[1]["role"],
load_type=self.DISK_ONLY_LOAD,
c_s_workload_type=self.WORKLOAD_LATENCY,
threads=250,
stress_duration_min=stress_duration,
max_rows_for_read=max_key_for_read),
'latency_throughput': self.define_read_cassandra_stress_command(
role=read_users[1]["role"],
load_type=self.DISK_ONLY_LOAD,
c_s_workload_type=self.WORKLOAD_THROUGHPUT,
threads=1000,
stress_duration_min=stress_duration,
max_rows_for_read=max_key_for_read)
}
# TODO: improvement_expected number and calculation of actual improvement was set by Eliran for chache only
# TODO: test. Should be adjusted for this test
improvement_expected = 1.8
self._throughput_latency_tests_run(read_users=read_users, read_cmds=read_cmds,
latency_user=read_users[1], improvement_expected=improvement_expected)
def test_read_50perc_write_50perc_load(self):
"""
Test scenario:
- Add SLA and grant to user (before any load)
- user190 with 190 shares
- user950 with 950 shares
- Each user runs load from own loader (round robin)
- Expect OPS ratio between two loads is 1:5 (e.g. 190:950)
- Expect scheduler run time between two loads is 1:5 (e.g. 190:950)
"""
stress_duration = 5 # minutes
# Select part of the record to warm the cache (all this data will be in the cache).
# This amount of data will be read during the test from cache
max_key_for_read = int(self.num_of_partitions * 0.5)
session = self.prepare_schema()
self.create_test_data_and_wait_no_compaction()
# Warm up the cache to guarantee the read will be from disk
self.warm_up_cache_before_test(max_key_for_read=max_key_for_read, stress_duration=30)
# Define Service Levels/Roles/Users
shares = [190, 950]
read_users = []
for share in shares:
read_users.append({'user': User(session=session, name='user%d' % share, password='user%d' % share,
superuser=True).create(),
'role': Role(session=session, name='role%d' % share, password='role%d' % share,
login=True, superuser=True).create(),
'service_level': ServiceLevel(session=session, name='sla%d' % share,
shares=share).create()})
self.attach_service_level(auths_list=read_users)
read_cmds = {'throughput': self.define_read_cassandra_stress_command(role=read_users[0]["role"],
load_type=self.MIXED_LOAD,
c_s_workload_type=self.WORKLOAD_THROUGHPUT,
threads=120,
stress_duration_min=stress_duration,
stress_command=self.STRESS_MIXED_CMD,
kwargs={'write_ratio': 1,
'read_ratio': 1}),
'latency': self.define_read_cassandra_stress_command(role=read_users[1]["role"],
load_type=self.MIXED_LOAD,
c_s_workload_type=self.WORKLOAD_LATENCY,
threads=120,
stress_duration_min=stress_duration,
stress_command=self.STRESS_MIXED_CMD,
kwargs={'write_ratio': 1, 'read_ratio': 1}),
'latency_throughput': self.define_read_cassandra_stress_command(
role=read_users[1]["role"],
load_type=self.MIXED_LOAD,
c_s_workload_type=self.WORKLOAD_THROUGHPUT,
threads=1000,
stress_duration_min=stress_duration,
max_rows_for_read=max_key_for_read,
stress_command=self.STRESS_MIXED_CMD,
kwargs={'write_ratio': 1,
'read_ratio': 1})
}
# TODO: improvement_expected number and calculation of actual improvement was set by Eliran for chache only
# TODO: test. Should be adjusted for this test
improvement_expected = 1.8
self._throughput_latency_tests_run(read_users=read_users, read_cmds=read_cmds,
latency_user=read_users[1], improvement_expected=improvement_expected)
def _throughput_latency_tests_run(self, read_cmds, read_users, latency_user, improvement_expected):
# pylint: disable=too-many-locals
# Wait that service levels are propagated to all nodes
time.sleep(10)
# Run latency workload
test_start_time = time.time()
self.log.debug('Start latency only workload')
read_queue = self.run_stress_and_verify_threads(params={'stress_cmd': [read_cmds.get('latency_only')
or read_cmds['latency']],
'round_robin': True})
latency_99_for_latency_workload = self.get_c_s_stats(read_queue=read_queue, users=[latency_user],
statistic_name='latency 99th percentile')
self.assertTrue(latency_99_for_latency_workload, msg='Not received cassandra-stress results for latency '
'workload')
# Run throughput (user950) and latency (user950) workloads
latency_workload_same_user, throughput_user950_workload, user950_result_print_str = \
self._throughput_latency_parallel_run(read_cmds=read_cmds,
test_start_time=test_start_time,
latency_99_for_latency_workload=latency_99_for_latency_workload,
latency_user=latency_user,
throughput_user=latency_user,
throughput_cmd_name='latency_throughput',
latency_cmd_name='latency')
# Run throughput (user150) and latency (user950) workloads
throughput_user = [user for user in read_users if user != latency_user][0]
latency_workload_mixed_users, throughput_user150_workload, user150_result_print_str = \
self._throughput_latency_parallel_run(read_cmds=read_cmds,
test_start_time=test_start_time,
latency_99_for_latency_workload=latency_99_for_latency_workload,
latency_user=latency_user,
throughput_user=throughput_user,
throughput_cmd_name='throughput',
latency_cmd_name='latency')
self.log.info("Result of run with user950 throughput and user950 latency workloads: %s",
user950_result_print_str)
self.log.info("Result of run with user150 throughput and user950 latency workloads: %s",
user150_result_print_str)
improvement_actual = (throughput_user950_workload * latency_workload_mixed_users) / \
(throughput_user150_workload * latency_workload_same_user)
if improvement_actual >= improvement_expected:
WorkloadPrioritisationEvent.SlaTestResult(
message=f'Actual improvement is {improvement_actual} more/equal then {improvement_expected} '
f'as expected.',
severity=Severity.NORMAL).publish()
else:
WorkloadPrioritisationEvent.SlaTestResult(
message=f'Actual improvement is {improvement_actual} less then expected {improvement_expected}',
severity=Severity.ERROR).publish()
self.clean_auth(entities_list_of_dict=read_users)
def test_workload_types(self):
"""
Test scenario: run 2 workload types (batch, interactive) using
Roles with relevant ServiceLevel objects attached to them.
Validate that the metrics differ and that the difference is
within the expected margins.
"""
session = self.prepare_schema()
self.create_test_data_and_wait_no_compaction(rows_amount=100_000)
stress_duration_min = 180
# Define Service Levels/Roles/Users
interactive_role = Role(session=session, name="interactive",
password="interactive", login=True, verbose=True, superuser=True).create()
batch_role = Role(session=session, name="batch1", password="batch1", login=True, verbose=True,
superuser=True).create()
interactive_sla = ServiceLevel(session=session, name="interactive", shares=None,
workload_type="interactive").create()
batch_sla = ServiceLevel(session=session, name="batch1", shares=None,
workload_type="batch").create()
interactive_role.attach_service_level(interactive_sla)
batch_role.attach_service_level(batch_sla)
read_cmds = {
'throughput_interactive': self.define_read_cassandra_stress_command(
role=interactive_role,
load_type=self.MIXED_LOAD,
c_s_workload_type=self.WORKLOAD_THROUGHPUT,
threads=120,
stress_duration_min=stress_duration_min,
stress_command=self.STRESS_MIXED_CMD,
kwargs={'write_ratio': 1, 'read_ratio': 1}
),
'throughput_batch': self.define_read_cassandra_stress_command(
role=batch_role,
load_type=self.MIXED_LOAD,
c_s_workload_type=self.WORKLOAD_THROUGHPUT,
threads=120,
stress_duration_min=stress_duration_min,
stress_command=self.STRESS_MIXED_CMD,
kwargs={'write_ratio': 1, 'read_ratio': 1}
),
}
try:
self.log.debug('Running interactive and batch workloads in sequence...')
workloads_queue = self.run_stress_and_verify_threads(params={'stress_cmd': [
read_cmds['throughput_interactive'],
read_cmds["throughput_batch"],
],
'round_robin': True})
self._comparison_results = self._compare_workloads_c_s_metrics(workloads_queue)
self.log.info("C-S comparison results:\n%s", self._comparison_results)
self.upload_c_s_comparison_to_es()
finally:
pass
def _compare_workloads_c_s_metrics(self, workloads_queue: list) -> dict:
comparison_axis = {"latency 95th percentile": 2.0,
"latency 99th percentile": 2.0,
"op rate": 2.0}
if ComparableScyllaVersion(self.db_cluster.nodes[0].scylla_version) >= '2024.2.0~rc3':
# Running the test with 2024.3 - deviation was improved
comparison_axis = {"latency 95th percentile": 1.0,
"latency 99th percentile": 1.0,
"op rate": 1.0}
workloads_results = {}
for workload in workloads_queue:
result = self.get_stress_results(queue=workload, store_results=False)
workloads_results.update({result[0].get("username"): result[0]})
assert len(workloads_results) == 2, \
"Expected workload_results length to be 2, got: %s. workload_results: %s" % (
len(workloads_results), workloads_results)
comparison_results = {}
try:
for item, target_margin in comparison_axis.items():
interactive = float(workloads_results["interactive"][item])
batch = float(workloads_results["batch1"][item])
ratio = interactive / batch if item == "op rate" else batch / interactive
within_margin = self.validate_deviation(expected_ratio=target_margin, actual_ratio=ratio,
msg=f'Validate workload ration for "{item}" item. ')
comparison_results.update(
{
item: {
"interactive": interactive,
"batch": batch,
"diff": batch - interactive,
"ratio": ratio,
"within_margin": within_margin
}
}
)
return comparison_results
except Exception:
self.log.info("Failed to compare c-s results for batch and interactive"
"workloads.")
raise
def upload_c_s_comparison_to_es(self) -> None:
self.log.info("Uploading c-s comparison to ES...")
es_body = {
self.db_cluster.get_node().db_node_instance_type: {
"test_id": self.test_id,
"backend": self.db_cluster.params.get("cluster_backend"),
"scylla_version": self.get_scylla_versions(),
**self._comparison_results
}
}
self._es.create_doc(index="workload_types", doc_type="test_stats",
doc_id=self.test_id, body=es_body)
self.log.info("C-s comparison uploaded to ES.")
def get_email_data(self):
self.log.info("Prepare data for email for SLA test")
email_data = {}
try:
email_data = self._get_common_email_data()
except Exception as error: # pylint: disable=broad-except # noqa: BLE001
self.log.error("Error in gathering common email data: Error:\n%s", error)
email_data.update({
"scylla_ami_id": self.params.get("ami_id_db_scylla") or "-",
"region": self.params.get("region_name") or "-",
"workload_comparison": self._comparison_results if self._comparison_results else {}
})
return email_data
# pylint: disable=inconsistent-return-statements
def get_test_status(self) -> str:
if self._comparison_results:
try:
if all((item["within_margin"] for item in self._comparison_results.values())):
return "SUCCESS"
else:
return "FAILED"
except KeyError as exc:
self.log.error("Exception on attempting to check workload comparison results:\n%s", exc)
return super().get_test_status()
else:
return super().get_test_status()
def _throughput_latency_parallel_run(self, read_cmds, test_start_time, latency_99_for_latency_workload,
latency_user, throughput_user, throughput_cmd_name, latency_cmd_name):
def __get_stat_for_user(read, user_name):
# This is handle case when both loads (latency and throughput) are run for the same user
stat_rate, _ = self.one_run_c_s_stats(read_run=read, user_name=user_name,
statistic_name='latency 99th percentile')
if stat_rate:
latency_99_for_mixed_workload[user_name] = float(stat_rate)
self.log.debug('Start latency workload (user %s) in parallel with throughput workload '
'(user %s)', latency_user, throughput_user)
read_queue = self.run_stress_and_verify_threads(params={'stress_cmd': [read_cmds[throughput_cmd_name],
read_cmds[latency_cmd_name]],
'round_robin': True})
latency_99_for_mixed_workload = {}
# Get stats for throughput user load
__get_stat_for_user(read=read_queue[0], user_name=throughput_cmd_name)
# Get stats for latency user load
__get_stat_for_user(read=read_queue[1], user_name=latency_cmd_name)
self.assertTrue(latency_99_for_mixed_workload, msg='Not received cassandra-stress for mixed workload')
grafana_screenshots = self.monitors.get_grafana_screenshots_from_all_monitors(test_start_time=test_start_time)
self.log.debug('GRAFANA SCREENSHOTS: {}'.format(grafana_screenshots))
# Compare latency of two runs
self.log.debug('Test results:\n---------------------\n')
latency_99_latency_workload = latency_99_for_latency_workload[latency_user['role'].name]
latency_99_mixed_workload = latency_99_for_mixed_workload[latency_cmd_name]
deviation = self.calculate_deviation(latency_99_latency_workload, latency_99_mixed_workload)
if latency_99_mixed_workload > latency_99_latency_workload:
latency_change = 'increased'
elif latency_99_mixed_workload == latency_99_latency_workload:
latency_change = 'not changed'
else:
latency_change = 'decreased'
result_print_str = '\nTest results:\n---------------------\n'
result_print_str += '\nWorkload | Latency 99%'
result_print_str += '\n========================= | ================='
result_print_str += '\nLatency only | {}'.format(latency_99_latency_workload)
result_print_str += '\nLatency and throughput | {}'.format(latency_99_mixed_workload)
result_print_str += '\n------------------------- | -----------------'
result_print_str += '\nLatency 99 is {} in {}%'.format(latency_change, deviation)
return latency_99_latency_workload, latency_99_mixed_workload, result_print_str