This repository has been archived by the owner on May 31, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensorboard_logging.py
83 lines (65 loc) · 2.46 KB
/
tensorboard_logging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
Simple example on how to log scalars and images to tensorboard without tensor ops.
License: Copyleft
"""
__author__ = "Michael Gygli"
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from io import BytesIO
def log_scalar(callback, tag, value, step):
"""Log a scalar variable.
Parameter
----------
tag : basestring
Name of the scalar
value
step : int
training iteration
"""
summary = tf.Summary(value=[tf.Summary.Value(tag=tag,
simple_value=value)])
callback.writer.add_summary(summary, step)
def log_images(callback, tag, images, step):
"""Logs a list of images."""
im_summaries = []
for nr, img in enumerate(images):
# Write the image to a string
s = BytesIO()
plt.imsave(s, img, format='png')
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1])
# Create a Summary value
im_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, nr),
image=img_sum))
# Create and write Summary
summary = tf.Summary(value=im_summaries)
callback.writer.add_summary(summary, step)
def log_histogram(callback, tag, values, step, bins=1000):
"""Logs the histogram of a list/vector of values."""
# Convert to a numpy array
values = np.array(values)
# Create histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill fields of histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values ** 2))
# Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1]
# See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30
# Thus, we drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
callback.writer.add_summary(summary, step)
callback.writer.flush()