Skip to content

Latest commit

 

History

History
34 lines (27 loc) · 1.46 KB

README.md

File metadata and controls

34 lines (27 loc) · 1.46 KB

An Empirical Study of Memorization in NLP

ACL 2022

Installing / Getting started

docker run -it --gpus all --name <docker_name> --ipc=host -v <project_path>:/opt/codes nvcr.io/nvidia/pytorch:20.02-py3 bash
pip install torch==1.2.0
pip install transformers==3.0.2
jupyter notebook --notebook-dir=/opt/codes --ip=0.0.0.0 --no-browser --allow-root

Prepare the datasets

Download the CIFAR-10, SNLI, SST, Yahoo! Answer datasets from web and then process them using the 00_EDA.ipynb

Run the experiments

git clone https://github.com/xszheng2020/memorization.git
cd cifar
bash ./scripts/run_if_attr_42.sh # compute the memorization scores and memorization attributions
bash ./scripts/run_mem_<X>.sh # train the model while dropping top-X% memorized instances
bash ./scripts/run_random_<X>.sh # train the model while dropping X% instances randomly
bash ./scripts/eval_attr_mem.sh # eval the memorization attributions
bash ./scripts/eval_attr_random.sh # eval the random attributions

Analyze the results

How to analyze the results and plot the most figures in the paper can be found in the jupyter notebooks.

Links