forked from slowmoyang/deepmeteor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fit-single-batch.py
executable file
·62 lines (49 loc) · 1.96 KB
/
fit-single-batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/env python
import sys
import torch
from torch.utils.data import DataLoader
import tqdm
from torchhep.optim import configure_optimizers
from deepmeteor.data.dataset import MeteorDataset
from deepmeteor.data.transformations import Standardization
from deepmeteor.data.eventweighting.densityweight import DensityWeightHist
from deepmeteor.models.utils import find_model_config_cls
from deepmeteor.env import find_from_data_dir
def main():
if len(sys.argv) < 2 or sys.argv[1] in ('-h', '--help'):
print('usage: python train.py MODEL_NAME')
sys.exit(1)
model_name, *argv = sys.argv[1:]
device = torch.device('cpu')
model_config_cls = find_model_config_cls(model_name)
model_config = model_config_cls.from_args(argv)
model = model_config.build().to(device)
print(model)
data_xform = Standardization.from_dict({
# 'gen_met_std': [60, 60],
'gen_met_std': [1, 1],
'puppi_cands_cont_std': [10, 10, 1, 1]
})
event_weighting_path = find_from_data_dir('DensityWeightHist.npz')
event_weighting = DensityWeightHist.from_npz(event_weighting_path)
dataset_path = str(find_from_data_dir('perfNano_TTbar_PU200.110X_set0.root'))
dataset = MeteorDataset.from_root(
path_list=[dataset_path],
transformation=data_xform,
event_weighting=event_weighting,
entry_start=0,
entry_stop=8192)
data_loader = DataLoader(dataset, batch_size=4096, collate_fn=MeteorDataset.collate)
batch = next(iter(data_loader)).to(device)
optimizer = configure_optimizers(model, learning_rate=0.1, fused=False)
loss_fn = torch.nn.L1Loss()
for _ in (pbar := tqdm.trange(10000)):
optimizer.zero_grad(set_to_none=True)
output = model.run(batch)
loss = loss_fn(input=output, target=batch.target)
loss.backward()
optimizer.step()
loss = loss.item()
pbar.set_description(f'{loss=:.4f}')
if __name__ == "__main__":
main()