Before installation, you need to create an account on the FLAME website and prepare your login and password beforehand. You will be asked to provide them in the download script.
bash download_data.sh
cd ckpt
gdown 1Wi5GmNEDLmLYvO-jCHzT2OtCAercHOic # Pretrained SyncDreamer model
cd ../assets/
gdown 185t69roYEuhVnRq5D33KMI7F7-pu2oG_ # fitted FLAME vertices for FaceScape
gdown 16FdCGEvC-t8EoMZFbhk6HGllhTEVlpiZ # cleaned up SMPL-X vertices for THuman 2.1
unzip thuman_smplx.zip
rm thuman_smplx.zip
cd ..
Our preprocess script for FaceScape is based on DINER. Due to the slow color calibration, it is highly advised to parallelize the process.
1. Request access for the Facescape dataset via https://facescape.nju.edu.cn/Page_Download/
3. Extract the downloaded files all into FACESCAPE_RAW
. After extraction, the directory structure should look like this:
```
- FACESCAPE_RAW (dataset root)
|- 1
| |- 1_neutral
| | |- 0.jpg
| | |- 1.jpg
| | |- ...
| | |- 54.jpg
| | |- params.json
| |- 1_neutral.ply
| |- 2_smile
| |- 2_smile.ply
| |- ...
| |- dpmap
| | |- 1_neutral.png
| | |- 2_smile.png
| | |- ...
| | |- ...
| |- models_reg
| | |- 1_neutral.obj
| | |- 1_neutral.jpg
| | |- 1_neutral.mtl
| | |- 2_smile.obj
| | |- 2_smile.jpg
| | |- 2_smile.mtl
| | |- ...
|- 2
|- ...
```
cd preprocessing/facescape
For Slurm clusters with OpenMPI support:
sbatch process_all_mpi.sh
For single machine:
bash process_all.sh
1. Request access for the THuman 2.1 dataset via https://github.com/ytrock/THuman2.0-Dataset/blob/main/THUman2.0_Agreement.pdf
2. Extract the downloaded files all into thuman_2.1
. After extraction, the directory structure should look like this:
```
- thuman_2.1 (dataset root)
|- 0000
| |- 0000.obj
| |- material0.jpeg
| |- material0.mtl
|- 0001
| |- 0001.obj
| |- material0.jpeg
| |- material0.mtl
|- 0002
|- ...
```
Extract SMPL-X scale and translations:
cd preprocessing/facescape
python get_smplx_scale.py --smplx_dir ../../assets/thuman_smplx --output_dir OUTPUT_DIR
For Slurm clusters with OpenMPI support:
sbatch render_batch_mpi.sh
For single machine:
python render_batch.py --input_dir ../../assets/thuman_smplx --output_dir OUTPUT_DIR