-
Notifications
You must be signed in to change notification settings - Fork 13
/
model.py
155 lines (139 loc) · 7.87 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import tensorflow as tf
def cnn_inference(images, batch_size, n_classes):
"""
输入
images 输入的图像
batch_size 每个批次的大小
n_classes n分类
返回
softmax_linear 还差一个softmax
"""
# 第一层的卷积层conv1,卷积核为3X3,有16个
with tf.variable_scope('conv1') as scope:
# 建立weights和biases的共享变量
# conv1, shape = [kernel size, kernel size, channels, kernel numbers]
weights = tf.get_variable('weights',
shape=[3, 3, 3, 16],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32)) # stddev标准差
biases = tf.get_variable('biases',
shape=[16],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
# 卷积层 strides = [1, x_movement, y_movement, 1], padding填充周围有valid和same可选择
conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')
pre_activation = tf.nn.bias_add(conv, biases) # 加入偏差
conv1 = tf.nn.relu(pre_activation, name=scope.name) # 加上激活函数非线性化处理,且是在conv1的命名空间
# 第一层的池化层pool1和规范化norm1(特征缩放)
with tf.variable_scope('pooling1_lrn') as scope:
pool1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],
padding='SAME', name='pooling1')
norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0,
beta=0.75,name='norm1')
# ksize是池化窗口的大小=[1,height,width,1],一般height=width=池化窗口的步长
# 池化窗口的步长一般是比卷积核多移动一位
# tf.nn.lrn是Local Response Normalization,(局部响应归一化)
# 第二层的卷积层cov2,这里的命名空间和第一层不一样,所以可以和第一层取同名
with tf.variable_scope('conv2') as scope:
weights = tf.get_variable('weights',
shape=[3, 3, 16, 16], # 这里只有第三位数字16需要等于上一层的tensor维度
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[16],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1],padding='SAME')
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name='conv2')
# 第二层的池化层pool2和规范化norm2
with tf.variable_scope('pooling2_lrn') as scope:
norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0,
beta=0.75,name='norm2')
pool2 = tf.nn.max_pool(norm2, ksize=[1, 2, 2, 1], strides=[1, 1, 1, 1],
padding='SAME',name='pooling2')
# 这里选择了先规范化再池化
# 第三层为全连接层local3
with tf.variable_scope('local3') as scope:
# flatten-把卷积过的多维tensor拉平成二维张量(矩阵)
reshape = tf.reshape(pool2, shape=[batch_size, -1]) # batch_size表明了有多少个样本
dim = reshape.get_shape()[1].value # 知道-1(代表任意)这里具体是多少个
weights = tf.get_variable('weights',
shape=[dim, 256], # 连接256个神经元
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[256],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) # 矩阵相乘加上bias
# 第四层为全连接层local4
with tf.variable_scope('local4') as scope:
weights = tf.get_variable('weights',
shape=[256, 512], # 再连接512个神经元
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[512],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')
# 第五层为输出层softmax_linear
with tf.variable_scope('softmax_linear') as scope:
weights = tf.get_variable('weights',
shape=[512, n_classes],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[n_classes],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')
# 这里只是命名为softmax_linear,真正的softmax函数放在下面的losses函数里面和交叉熵结合在一起了,这样可以提高运算速度。
# softmax_linear的行数=local4的行数,列数=weights的列数=bias的行数=需要分类的个数
# 经过softmax函数用于分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解
return softmax_linear
def losses(logits, labels):
"""
输入
logits: 经过cnn_inference处理过的tensor
labels: 对应的标签
返回
loss: 损失函数(交叉熵)
"""
with tf.variable_scope('loss') as scope:
# 下面把交叉熵和softmax合到一起写是为了通过spares提高计算速度
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels, name='loss_per_eg')
loss = tf.reduce_mean(cross_entropy, name='loss') # 求所有样本的平均loss
return loss
def training(loss, learning_rate):
"""
输入
loss: 损失函数(交叉熵)
learning_rate: 学习率
返回
train_op: 训练的最优值
"""
with tf.name_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
# global_step不是共享变量,初始值为0,设定trainable=False 可以防止该变量被数据流图的 GraphKeys.TRAINABLE_VARIABLES 收集,
# 这样我们就不会在训练的时候尝试更新它的值。
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step= global_step)
return train_op
def evaluation(logits, labels):
"""
输入
logits: 经过cnn_inference处理过的tensor
labels:
返回
accuracy:正确率
"""
with tf.variable_scope('accuracy') as scope:
prediction = tf.nn.softmax(logits) # 这个logits有n_classes列
# prediction每行的最大元素(1)的索引和label的值相同则为1 否则为0。
correct = tf.nn.in_top_k(prediction, labels, 1)
# correct = tf.nn.in_top_k(logits, labels, 1) 也可以不需要prediction过渡,因为最大值的索引没变,这里这样写是为了更好理解
correct = tf.cast(correct, tf.float16) # 记得要转换格式
accuracy = tf.reduce_mean(correct)
return accuracy