-
Notifications
You must be signed in to change notification settings - Fork 11
/
observation_infomax_dataset.py
141 lines (119 loc) · 5.69 KB
/
observation_infomax_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import json
import random
from tqdm import tqdm
from os.path import join as pjoin
import numpy as np
import gym
class ObservationInfomaxData(gym.Env):
FILENAMES_MAP = {
"train": "train.json",
"valid": "valid.json",
"test": "test.json"
}
def __init__(self, config):
self.rng = None
self.config = config
self.read_config()
self.seed(self.random_seed)
# Load dataset splits.
self.dataset = {}
for split in ["train", "valid", "test"]:
self.dataset[split] = {
"observations": [],
"previous_actions": [],
"candidate_actions": [],
"candidate_obs": []
}
self.load_dataset_for_obs_gen(split)
print("loaded dataset from {} ...".format(self.data_path))
self.train_size = len(self.dataset["train"]["observations"])
self.valid_size = len(self.dataset["valid"]["observations"])
self.test_size = len(self.dataset["test"]["observations"])
self.batch_pointer = None
self.data_size, self.batch_size, self.data = None, None, None
self.split = "train"
def load_dataset_for_obs_gen(self, split):
file_path = pjoin(self.data_path, self.FILENAMES_MAP[split])
desc = "Loading {}".format(os.path.basename(file_path))
print(desc)
with open(file_path) as f:
data = json.load(f)
obs_list, prev_action_list, candidate_actions_list, candidate_obs_list = [], [], [], []
for sequence in tqdm(data, desc=desc):
obs_list.append([e["observation"]["feedback"] for e in sequence])
prev_action_list.append([e["previous_action"] for e in sequence])
sequence_cand_actions, sequence_cand_obs = [], []
for e in sequence:
cand_actions, cand_obs = [], []
for candidate in e["candidates"]:
cand_actions.append(candidate["action"])
cand_obs.append(candidate["observation"]["feedback"])
sequence_cand_actions.append(cand_actions)
sequence_cand_obs.append(cand_obs)
candidate_actions_list.append(sequence_cand_actions)
candidate_obs_list.append(sequence_cand_obs)
ids = np.arange(len(obs_list))
random.seed(123)
random.shuffle(ids)
for i in range(len(ids)):
self.dataset[split]["observations"].append(obs_list[ids[i]])
self.dataset[split]["previous_actions"].append(prev_action_list[ids[i]])
self.dataset[split]["candidate_actions"].append(candidate_actions_list[ids[i]])
self.dataset[split]["candidate_obs"].append(candidate_obs_list[ids[i]])
def read_config(self):
self.data_path = self.config["obs_gen"]["data_path"]
self.random_seed = self.config["general"]["random_seed"]
self.use_this_many_data = self.config["general"]["use_this_many_data"]
self.training_batch_size = self.config["general"]["training"]["batch_size"]
self.evaluate_batch_size = self.config["general"]["evaluate"]["batch_size"]
def split_reset(self, split):
if split == "train":
self.data_size = self.train_size
self.batch_size = self.training_batch_size
elif split == "valid":
self.data_size = self.valid_size
self.batch_size = self.evaluate_batch_size
else:
self.data_size = self.test_size
self.batch_size = self.evaluate_batch_size
if split == "train" and self.use_this_many_data > 0:
self.data = {"observations": self.dataset[split]["observations"][: self.use_this_many_data],
"previous_actions": self.dataset[split]["previous_actions"][: self.use_this_many_data],
"candidate_actions": self.dataset[split]["candidate_actions"][: self.use_this_many_data],
"candidate_obs": self.dataset[split]["candidate_obs"][: self.use_this_many_data]}
self.data_size = self.use_this_many_data
elif split == "train":
self.data = self.dataset[split]
else:
# valid and test, we use 1k data points
self.data = {"observations": self.dataset[split]["observations"][: 1000],
"previous_actions": self.dataset[split]["previous_actions"][: 1000],
"candidate_actions": self.dataset[split]["candidate_actions"][: 1000],
"candidate_obs": self.dataset[split]["candidate_obs"][: 1000]}
self.data_size = 1000
self.split = split
self.batch_pointer = 0
def get_batch(self):
if self.split == "train":
indices = self.rng.choice(self.data_size, self.batch_size)
else:
start = self.batch_pointer
end = min(start + self.batch_size, self.data_size)
indices = np.arange(start, end)
self.batch_pointer += self.batch_size
if self.batch_pointer >= self.data_size:
self.batch_pointer = 0
observations, previous_actions, candidate_actions, candidate_obs = [], [], [], []
for idx in indices:
observations.append(self.data["observations"][idx])
previous_actions.append(self.data["previous_actions"][idx])
candidate_actions.append(self.data["candidate_actions"][idx])
candidate_obs.append(self.data["candidate_obs"][idx])
return observations, previous_actions, candidate_obs, candidate_actions
def render(self, mode='human'):
return
def close(self):
return
def seed(self, seed):
self.rng = np.random.RandomState(seed)