-
Notifications
You must be signed in to change notification settings - Fork 0
/
search1.Rmd
590 lines (423 loc) · 17 KB
/
search1.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
---
title: "resach1"
author: "xiaodi"
date: "2018年10月28日"
output: word_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
options(digits = 2)
```
```{r, include=FALSE, warning=FALSE}
library(dplyr)
library(readr)
library(ggplot2)
library(readr)
library(knitr)
library(purrr)
library(tidyr)
paper_search <- read_csv("paper_search.csv",
col_types = cols(id_index = col_character(),
id_index_1 = col_character()))
# 体重身高有异常值手动修改
Data <- paper_search %>%
filter(CysC < 50,
CRE > 2 ) %>%
select(-c(id_index_1)) %>%
mutate(bmi = weight / (height ^ 2)) %>%
mutate(Y_CLASS = case_when(
ACR >= 300 ~ "大量白蛋白尿组",
ACR >= 30 & ACR < 300 ~ "微量白蛋白尿组",
ACR < 30 ~ "正常白蛋白尿组",
TRUE ~ "未知"
)) %>%
distinct(id_index, be_admission_time, .keep_all = TRUE) %>%
filter(Y_CLASS == "大量白蛋白尿组") %>%
mutate(ageEffect = if_else(gender == '男', 1, 0.742)) %>%
mutate(GFR = 30849 * (CRE^(-1.154)) * (age^(-0.203)) * ageEffect) %>%
mutate(
GFR_CLASS = case_when(
GFR >= 90 ~ "正常",
GFR >= 60 & GFR <90 ~ "轻度下降",
GFR >= 30 & GFR <60 ~ "中度下降",
GFR >= 15 & GFR <30 ~ "重度下降",
GFR <15 ~ "肾衰竭",
TRUE ~ "未知"
),
GFR_CLASS_ARR = case_when(
GFR >= 90 ~ 1,
GFR >= 60 & GFR <90 ~ 2,
GFR >= 30 & GFR <60 ~ 3,
GFR >= 15 & GFR <30 ~ 4,
GFR <15 ~ 5,
TRUE ~ 0
),
# AGE_CLASS = case_when(
# age >= 90 ~ '长寿老年人',
# age >= 75 & age < 90 ~ '老人',
# age >= 60 & age < 75 ~ '老人前期',
# age >= 45 & age < 60 ~ '中年',
# age < 45 ~ '青年',
# TRUE ~ '未知'
# )
AGE_CLASS = case_when(
age >= 80 ~ '80以上',
age >= 70 & age < 80 ~ '70-80',
age >= 60 & age < 70 ~ '60-70',
age >= 50 & age < 60 ~ '50-60',
age >= 40 & age < 50 ~ '40-50',
# age >= 30 & age < 40 ~ '30-40',
age >= 20 & age < 40 ~ '20-40',
age < 20 ~ '20以下',
TRUE ~ '未知'
),
BMI_CLASS = case_when(
bmi >= 28 ~ "肥胖",
bmi >= 24 & bmi < 28 ~ "超重BMI",
bmi >= 18.5 & bmi < 24 ~ "健康体重",
bmi < 18.5 ~ "轻体重",
TRUE ~ "未知"
)
)
print(names(Data))
```
```{r, include=FALSE, warning=FALSE}
#患者总人数
patient_num <- as.character(Data %>% summarise(num = n()))
#患者男女人数
patient_sex_num <- Data %>% group_by(gender) %>% summarise(num = n())
#患者年龄跨度
patient_age_range <- Data %>% summarise(max = max(age), min = min(age))
#患者年龄均值95%置信区间
patient_age_mean <- as.numeric(t.test(Data$age)$estimate)
patient_age_range_conf <- patient_age_mean - as.numeric(t.test(Data$age)$conf.int)[1]
#患者病程跨度
patient_courseofdiabetes_range <- Data %>% summarise(max = max(courseofdiabetes), min = min(courseofdiabetes))
#患者病程均值95%置信区间
patient_courseofdiabetes_mean <- as.numeric(t.test(Data$courseofdiabetes)$estimate)
patient_courseofdiabetes_range_conf <- patient_courseofdiabetes_mean - as.numeric(t.test(Data$courseofdiabetes)$conf.int)[1]
#患者BMI跨度
patient_BMI_range <- Data %>% summarise(max = max(bmi), min = min(bmi))
#患者BMI均值95%置信区间
patient_BMI_mean <- as.numeric(t.test(Data$bmi)$estimate)
patient_BMI_range_conf <- patient_BMI_mean - as.numeric(t.test(Data$bmi)$conf.int)[1]
print(patient_BMI_mean)
# 各组有多少人
Y_CLASS_num <- Data %>% group_by(GFR_CLASS) %>% summarise(num = n())
```
## 1、初步统计资料
1、肾内科住院部收治的2 型糖尿病患者(`r patient_num`)例,其中男 `r patient_sex_num$num[1]`
例,女 `r patient_sex_num$num[2]` 例,年龄`r patient_age_range$min`-`r patient_age_range$max` 岁,平均 (`r patient_age_mean`± `r patient_age_range_conf`) 岁;病程 `r patient_courseofdiabetes_range$min`-`r patient_courseofdiabetes_range$max` 年,平均 (`r patient_courseofdiabetes_mean`± `r patient_courseofdiabetes_range_conf`) 年;BMI `r patient_BMI_range$min`-`r patient_BMI_range$max`,平均 (`r patient_BMI_mean`± `r patient_BMI_range_conf`)。
按eGFR[ml/(min·1 .73 m2)]分为:≥90,60-89,30-59,15-29,<15 分组,其中:
≥90(`r Y_CLASS_num$num[3]`)例。
60-89(`r Y_CLASS_num$num[1]`)例。
30-59(`r Y_CLASS_num$num[4]`)例,
15-29(`r Y_CLASS_num$num[5]`)例,
<15 (`r Y_CLASS_num$num[2]`)例,
## 2、可比性:性别(男/女)、年龄、病程、BMI
+ 性别
```{r, echo=FALSE}
#性别
genderdata <- Data %>%
group_by(GFR_CLASS, GFR_CLASS_ARR, gender) %>%
summarise(num = n()) %>%
ungroup() %>%
spread(gender, num) %>%
arrange(GFR_CLASS_ARR) %>%
select(-GFR_CLASS_ARR)
# select(gender, '正常', '轻度下降', '中度下降', '重度下降', '肾衰竭')
kable(genderdata, caption = '各组男女人数分布')
```
在不同ACR水平下男女的人数。根据数据看,在不同ACR水平下还是男的人数占大部分
+ 年龄
```{r, echo=FALSE}
#年龄
agedata <- Data %>%
group_by(GFR_CLASS, GFR_CLASS_ARR) %>%
summarise(max = max(age),
upper = quantile(age, 0.75),
median = median(age),
mean = mean(age),
lower = quantile(age, 0.25),
min = min(age)
) %>%
ungroup() %>%
gather(key = type, value = value, max, upper, median, mean, lower, min) %>%
spread(type, value) %>%
arrange(GFR_CLASS_ARR) %>%
select(-GFR_CLASS_ARR)
# select(type, '正常', '轻度下降', '中度下降', '重度下降', '肾衰竭')
kable(agedata, caption = '年龄分布')
```
min为最小值,lower为下四分位, median为中位数, mean为均值, upper为上四分位, max为最大值
例如:
正常组 年龄最小为31岁,最大值57岁, 平均数47岁,中位数为48岁, 下四分位(等于该样本中所有数值由小到大排列后第25%的数字)为42,
上四分位(等于该样本中所有数值由小到大排列后第75%的数字)为52,
每组中年龄还是有较大差异,不建议做可比性
+ 病程
```{r, echo=FALSE}
#病程
coursedata <- Data %>%
group_by(GFR_CLASS, GFR_CLASS_ARR) %>%
summarise(max = max(courseofdiabetes),
upper = quantile(courseofdiabetes, 0.75),
median = median(courseofdiabetes),
mean = mean(courseofdiabetes),
lower = quantile(courseofdiabetes, 0.25),
min = min(courseofdiabetes)
) %>%
ungroup() %>%
gather(key = type, value = value, max, upper, median, mean, lower, min) %>%
spread(type, value) %>%
arrange(GFR_CLASS_ARR) %>%
select(-GFR_CLASS_ARR)
# select(type, '正常', '轻度下降', '中度下降', '重度下降', '肾衰竭')
kable(coursedata, caption = '病程分布')
```
+ BMI
```{r, echo=FALSE}
#BMI
BMIdata <- Data %>%
group_by(GFR_CLASS, GFR_CLASS_ARR) %>%
summarise(max = max(bmi),
upper = quantile(bmi, 0.75),
median = median(bmi),
mean = mean(bmi),
lower = quantile(bmi, 0.25),
min = min(bmi)
) %>%
ungroup() %>%
gather(key = type, value = value, max, upper, median, mean, lower, min) %>%
spread(type, value) %>%
arrange(GFR_CLASS_ARR) %>%
select(-GFR_CLASS_ARR)
# select(type, '正常', '轻度下降', '中度下降', '重度下降', '肾衰竭')
kable(BMIdata, caption = 'BMI分布')
```
## 3、各组以下指标x±s
UREA为BUN CRE为scr
```{r, echo=FALSE}
T.test <- function(DaTa, Class, Col){
DATA <- DaTa %>% filter(GFR_CLASS == Class) %>% as.data.frame(.) %>% .[, quo_name(Col)]
data.frame(
y_class = Class,
index = Col,
mean = t.test(DATA)$estimate,
conf = t.test(DATA)$estimate - as.numeric(t.test(DATA)$conf.int)[1],
row.names = NULL)
}
Y_CLASS_name <- distinct(Data, GFR_CLASS) %>% mutate(num = 1)
select_name <- tibble(name = c('CysC', 'UREA', 'CRE', 'ACR'), num=1)
index_combie <- Y_CLASS_name %>% left_join(select_name, by = c("num"))
newdata <- data.frame()
for (i in 1:nrow(index_combie)) {
TTest <- T.test(DaTa = Data,
Class = as.character(index_combie[i, 'GFR_CLASS']),
Col = as.character(index_combie[i, 'name']))
newdata <- rbind(newdata, TTest)
}
newdata1 <- newdata %>%
mutate(rs = sprintf('%.2f±%.2f', mean, conf)) %>%
select(index, y_class, rs) %>%
spread(y_class, rs) %>%
select(index, '正常', '轻度下降', '中度下降', '重度下降', '肾衰竭')
kable(newdata1, format = "pandoc", caption = '各指标平均值')
```
随着GFR的下降,各项指标都是呈现上升的趋势
## 4、各组指标与ACR相关关系
### 总体
#### CysC与ACR+GFR各组
```{r, echo=FALSE, warning=FALSE, message=FALSE}
total_CysC_ACR_plot <- Data %>%
select(CysC, ACR, BMI_CLASS, GFR_CLASS)
ggplot(total_CysC_ACR_plot, aes(CysC, ACR, colour = GFR_CLASS)) +
geom_point() + # + geom_smooth()
ggtitle('总体_CysC与ACR+GFR_CLASS') +
scale_colour_discrete(limits=c('正常', '轻度下降', '中度下降', '重度下降', '肾衰竭'))
```
从CysC与ACR的散点图可以看出,CysC能有效区分GFR水平,但却与ACR无明显关系,随着CysC增加,能看出GFR下降,但ACR却忽高忽低。
#### CysC与ACR加年龄分段+BMI分段
```{r, echo=FALSE, warning=FALSE, message=FALSE}
total_CysC_ACR_plot <- Data %>%
select(CysC, ACR, BMI_CLASS, AGE_CLASS)
ggplot(total_CysC_ACR_plot, aes(CysC, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point() + # + geom_smooth()
ggtitle('总体_CysC与ACR+AGE_CLASS+BMI_CLASS')
# scale_colour_discrete(limits=c('正常', '轻度下降', '中度下降', '重度下降', '肾衰竭'))
```
加入年龄分段以及BMI分段,想要识别ACR升高却CysC较低的人群。看图关系也不是很明显
#### UREA与ACR+GFR各组
```{r, echo=FALSE, warning=FALSE, message=FALSE}
total_UREA_ACR_plot <- Data %>%
select(UREA, ACR, GFR_CLASS)
ggplot(total_UREA_ACR_plot, aes(UREA, ACR, colour = GFR_CLASS)) +
geom_point() +
ggtitle('总体_UREA与ACR') +
scale_colour_discrete(limits=c('正常', '轻度下降', '中度下降', '重度下降', '肾衰竭'))
```
同时在UREA与ACR中,也看得出UREA与GFR的明显关系,随着UREA升高,GFR是下降的。却没有CysC在轻度与中度的区分度好。但在UREA与ACR的关系上,在UREA处于较低水平时,部分ACR已经上升很高。 在UREA处于较高水平时,ACR却是较低的。
#### UREA与ACR加年龄分段+BMI分段
```{r, echo=FALSE, warning=FALSE, message=FALSE}
total_UREA_ACR_plot <- Data %>%
select(UREA, ACR, BMI_CLASS, AGE_CLASS)
ggplot(total_UREA_ACR_plot, aes(UREA, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point() + # + geom_smooth()
ggtitle('总体_UREA与ACR+AGE_CLASS+BMI_CLASS')
# scale_colour_discrete(limits=c('正常', '轻度下降', '中度下降', '重度下降', '肾衰竭'))
```
尝试用年龄以及BMI去区分在UREA较低和较高时的异常值,却并不能找到导致这种原因的特定人群,或还存在未关注到的分类指标,能很好划分特殊人群。
#### CRE与ACR+GFR各组
```{r, echo=FALSE, warning=FALSE, message=FALSE}
total_CRE_ACR_plot <- Data %>%
select(CRE, ACR, GFR_CLASS)
ggplot(total_CRE_ACR_plot, aes(CRE, ACR, colour = GFR_CLASS)) +
geom_point() +
ggtitle('总体_CRE与ACR') +
scale_colour_discrete(limits=c('正常', '轻度下降', '中度下降', '重度下降', '肾衰竭'))
```
CRE在重度以及肾衰竭有着较好区分度,ACR与CRE没有明显关系
#### CRE与ACR加年龄分段+BMI分段
```{r, echo=FALSE, warning=FALSE, message=FALSE}
total_CRE_ACR_plot <- Data %>%
select(CRE, ACR, BMI_CLASS, AGE_CLASS)
ggplot(total_CRE_ACR_plot, aes(CRE, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point() + # + geom_smooth()
ggtitle('总体_CRE与ACR+AGE_CLASS+BMI_CLASS')
```
### 正常组
#### CysC与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
nomal_data <- Data %>%
filter(GFR_CLASS == '正常')
nomal_CysC_ACR_plot <- nomal_data %>%
select(CysC, ACR, BMI_CLASS, AGE_CLASS)
ggplot(nomal_CysC_ACR_plot, aes(CysC, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point() + # + geom_smooth()
ggtitle('正常组_CysC与ACR')
```
在正常组中,ACR异常的均为体重异常的
#### UREA与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
nomal_UREA_ACR_plot <- nomal_data %>%
select(UREA, ACR, BMI_CLASS, AGE_CLASS)
ggplot(nomal_UREA_ACR_plot, aes(UREA, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point() +
ggtitle('正常组_UREA与ACR')
```
#### CRE与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
nomal_CRE_ACR_plot <- nomal_data %>%
select(CRE, ACR, BMI_CLASS, AGE_CLASS)
ggplot(nomal_CRE_ACR_plot, aes(CRE, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point() +
ggtitle('正常组_CRE与ACR')
```
### 轻度下降
#### CysC与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
little_data <- Data %>%
filter(GFR_CLASS == '轻度下降')
little_CysC_ACR_plot <- little_data %>%
select(CysC, ACR, BMI_CLASS, AGE_CLASS)
ggplot(little_CysC_ACR_plot, aes(CysC, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point() +
ggtitle('轻度下降组_CysC与ACR')
```
#### UREA与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
little_UREA_ACR_plot <- little_data %>%
select(UREA, ACR, BMI_CLASS, AGE_CLASS)
ggplot(little_UREA_ACR_plot, aes(UREA, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point() +
ggtitle('轻度下降组_UREA与ACR')
```
#### CRE与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
little_CRE_ACR_plot <- little_data %>%
select(CRE, ACR, BMI_CLASS, AGE_CLASS)
ggplot(little_CRE_ACR_plot, aes(CRE, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point()+
ggtitle('轻度下降组_CRE与ACR')
```
### 中度下降
#### CysC与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
median_data <- Data %>%
filter(GFR_CLASS == '中度下降')
median_CysC_ACR_plot <- median_data %>%
select(CysC, ACR, BMI_CLASS, AGE_CLASS)
ggplot(median_CysC_ACR_plot, aes(CysC, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point()+
ggtitle('中度下降组_CysC与ACR')
```
#### UREA与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
median_UREA_ACR_plot <- median_data %>%
select(UREA, ACR, BMI_CLASS, AGE_CLASS)
ggplot(median_UREA_ACR_plot, aes(UREA, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point()+
ggtitle('中度下降组_UREA与ACR')
```
#### CRE与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
median_CRE_ACR_plot <- median_data %>%
select(CRE, ACR, BMI_CLASS, AGE_CLASS)
ggplot(median_CRE_ACR_plot, aes(CRE, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point()+
ggtitle('中度下降组_CRE与ACR')
```
### 重度下降
#### CysC与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
heavy_data <- Data %>%
filter(GFR_CLASS == '重度下降')
heavy_CysC_ACR_plot <- heavy_data %>%
select(CysC, ACR, BMI_CLASS, AGE_CLASS)
ggplot(heavy_CysC_ACR_plot, aes(CysC, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point()+
ggtitle('重度下降组_CysC与ACR')
```
#### UREA与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
heavy_UREA_ACR_plot <- heavy_data %>%
select(UREA, ACR, BMI_CLASS, AGE_CLASS)
ggplot(heavy_UREA_ACR_plot, aes(UREA, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point()+
ggtitle('重度下降组_UREA与ACR')
```
#### CRE与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
heavy_CRE_ACR_plot <- heavy_data %>%
select(CRE, ACR, BMI_CLASS, AGE_CLASS)
ggplot(heavy_CRE_ACR_plot, aes(CRE, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point()+
ggtitle('重度下降组_CRE与ACR')
```
### 肾衰竭
#### CysC与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
end_data <- Data %>%
filter(GFR_CLASS == '肾衰竭')
end_CysC_ACR_plot <- end_data %>%
select(CysC, ACR, BMI_CLASS, AGE_CLASS)
ggplot(end_CysC_ACR_plot, aes(CysC, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point() + #+ geom_smooth()
ggtitle('肾衰竭组_CysC与ACR')
```
#### UREA与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
end_UREA_ACR_plot <- end_data %>%
select(UREA, ACR, BMI_CLASS, AGE_CLASS)
ggplot(end_UREA_ACR_plot, aes(UREA, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point()+
ggtitle('肾衰竭组_UREA与ACR')
```
#### CRE与ACR
```{r, echo=FALSE, warning=FALSE, message=FALSE}
end_CRE_ACR_plot <- end_data %>%
select(CRE, ACR, BMI_CLASS, AGE_CLASS)
ggplot(end_CRE_ACR_plot, aes(CRE, ACR, colour = BMI_CLASS, shape=AGE_CLASS)) +
geom_point()+
ggtitle('肾衰竭组_CRE与ACR')
```
个人感觉,CysC、UREA、CRE与GFR有明显关系,但与ACR,能确定的是部分数据有同增关系,增加年龄与BMI试图去区分ACR高,其他指标低或者反之的人群却不明显,估计没有找到合适的指标进行区分。