-
Notifications
You must be signed in to change notification settings - Fork 0
/
Recommendations.py
275 lines (212 loc) · 7.57 KB
/
Recommendations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from math import sqrt
# A dictionary of movie critics and their ratings of a small set of movie
critics = {
'Lisa Rose' : {
'Lady in the Water' : 1.5,
'Snakes on a Plane' : 3.5,
'Just My Luck' : 3.0,
'Superman Returns' : 3.2,
'You, Me and Dupree' : 2.5,
'The Night Listener' : 3.0
},
'Gene Seymour' : {
'Lady in the Water' : 3.0,
'Snakes on a Plane' : 3.5,
'Just My Luck' : 1.5,
'Superman Returns' : 5.0,
'You, Me and Dupree' : 3.5,
'The Night Listener' : 3.0
},
'Michael Phillips' : {
'Lady in the Water' : 2.5,
'Snakes on a Plane' : 3.5,
'Just My Luck' : 3.0,
'Superman Returns' : 1.5,
'The Night Listener' : 4.0
},
'Claudia Puig' : {
'Snakes on a Plane' : 3.5,
'Just My Luck' : 3.0,
'Superman Returns' : 2.0,
'You, Me and Dupree' : 2.5,
'The Night Listener' : 4.5
},
'Mike LaSalle' : {
'Lady in the Water' : 3.0,
'Snakes on a Plane' : 5.0,
'Just My Luck' : 2.0,
'Superman Returns' : 3.0,
'You, Me and Dupree' : 2.0,
'The Night Listener' : 3.0
},
'Jack Matthews' : {
'Lady in the Water' : 3.0,
'Snakes on a Plane' : 4.0,
'Superman Returns' : 5.0,
'You, Me and Dupree' : 3.5,
'The Night Listener' : 3.0
},
'Toby' : {
'Snakes on a Plane' : 4.5,
'Superman Returns' : 4.0,
'You, Me and Dupree' : 1.0
}
}
# Returns a distance-basd similarity score for person1 and person2
def sim_distance(prefs, person1, person2) :
# Get the list of shared_items
si = {}
for item in prefs[person1] :
if item in prefs[person2] :
si[item] = 1
# If they have no rating s in common return 0
if len(si)== 0 :
return 0
# Add up the squares of all the differences
sum_of_squares = sum([pow(prefs[person1][item] - prefs[person2][item], 2) for item in si])
return 1 / (1 + sqrt(sum_of_squares))
# Returns the Pearson correlation coefficient for p1 and p2
def sim_pearson(prefs, person1, person2) :
# Get the list of shared_items
si = {}
for item in prefs[person1] :
if item in prefs[person2] :
si[item] = 1
n = len(si)
# If they have no rating s in common return 0
if n == 0 :
return 0
# Add up all the preferences
sum1 = sum([prefs[person1][item] for item in si])
sum2 = sum([prefs[person2][item] for item in si])
# Sum up the squares
sum1Sq = sum([pow(prefs[person1][item], 2) for item in si])
sum2Sq = sum([pow(prefs[person2][item], 2) for item in si])
# Sum up the products
productSum = sum([prefs[person1][item] * prefs[person2][item] for item in si])
# Calculate Pearson score
num = productSum - (sum1 * sum2 / n)
den = sqrt((sum1Sq - pow(sum1, 2) / n) * (sum2Sq - pow(sum2, 2) / n))
if den == 0 :
return 0
r = num / den
return r
# Return the best matches for person from the prefs dictionary.
# Number of results and similarity function are optional params.
def topMatches(prefs, person, n = 5, similarity = sim_pearson) :
scores = [(similarity(prefs, person, other), other) for other in prefs if other != person]
# Sort the list so the highest scores appear at the top
scores.sort()
scores.reverse()
return scores[0 : n]
def prebuildTopMatches(prefs, n = 5, similarity = sim_pearson) :
topMatched = {}
for userA in prefs :
topMatched[userA] = topMatches(prefs, userA)
return topMatched
def getRecommendationsFromPrebuildTopMaches(prefs, prebuildTopMatches, target) :
topmatched = prebuildTopMatches[target]
totals = {}
simSums = {}
for other in topmatched:
sim = other[0]
if sim <= 0 :
continue
person = other[1]
for item in prefs[person] :
# Only score movies I haven't seen yet
if item not in prefs[target] or prefs[person][item] == 0 :
# similarity * score
totals.setdefault(item, 0)
totals[item] += prefs[person][item] * sim
# Sum of similarities
simSums.setdefault(item, 0)
simSums[item] += sim
# Create the normalized list
rankings = [(total / simSums[item], item) for item, total in totals.items()]
# Return the sorted list
rankings.sort()
rankings.reverse()
return rankings
# Gets recommendations for a person by using a weighted average of every other user's rankings
def getRecommendations(prefs, person, similarity = sim_pearson) :
totals = {}
simSums = {}
for other in prefs:
if other == person :
continue
sim = similarity(prefs, person, other)
if sim <= 0 :
continue
for item in prefs[other] :
# Only score movies I haven't seen yet
if item not in prefs[person] or prefs[person][item] == 0 :
# similarity * score
totals.setdefault(item, 0)
totals[item] += prefs[other][item] * sim
# Sum of similarities
simSums.setdefault(item, 0)
simSums[item] += sim
# Create the normalized list
rankings = [(total / simSums[item], item) for item, total in totals.items()]
# Return the sorted list
rankings.sort()
rankings.reverse()
return rankings
def transformPrefs(prefs) :
result = {}
for person in prefs :
for item in prefs[person] :
result.setdefault(item, {})
result[item][person] = prefs[person][item]
return result
def calculateSimilarItems(prefs, n = 10) :
# Create a dictionary of items showing which other items they are most similar to.
result = {}
# Invert the preference matrix to be item-centric
itemPrefs = transformPrefs(prefs)
c = 0
for item in itemPrefs :
c += 1
if c % 10 == 0 :
print "%d / %d" % (c, len(itemPrefs))
#Find the most similar items to this one
scores = topMatches(itemPrefs, item, n = n, similarity = sim_distance)
result[item] = scores
return result
def getRecommendedItems(prefs, itemMatch, user) :
userRatings = prefs[user]
scores = {}
totalSim = {}
# Loop over items rated by this user
for (item, rating) in userRatings.items() :
# Loop over items similar to this one
for (similarity, item2) in itemMatch[item]:
# Ignore if this user has already rated this item
if item2 in userRatings:
continue
# Weighted sum of rating times similarity
scores.setdefault(item2, 0)
scores[item2] += similarity * rating
# Sum of all the similarities
totalSim.setdefault(item2, 0)
totalSim[item2] += similarity
# Divide each total score by total weighting to get an average
rankings = [(score / totalSim[item], item) for item, score in scores.items()]
# Return the rankings from highest to lowest
rankings.sort()
rankings.reverse()
return rankings
def loadMovieLens(path='data/movielens') :
# Get moview titles
movies = {}
for line in open(path + '/u.item') :
(id , title) = line.split('|')[0 : 2]
movies[id] = title
# Load data
prefs = {}
for line in open(path + '/u.data') :
(user, movieid, rating, ts) = line.split('\t')
prefs.setdefault(user, {})
prefs[user][movies[movieid]] = float(rating)
return prefs