forked from trekhleb/javascript-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 1
/
eulerianPath.js
101 lines (84 loc) · 3.41 KB
/
eulerianPath.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import graphBridges from '../bridges/graphBridges';
/**
* Fleury's algorithm of finding Eulerian Path (visit all graph edges exactly once).
*
* @param {Graph} graph
* @return {GraphVertex[]}
*/
export default function eulerianPath(graph) {
const eulerianPathVertices = [];
// Set that contains all vertices with even rank (number of neighbors).
const evenRankVertices = {};
// Set that contains all vertices with odd rank (number of neighbors).
const oddRankVertices = {};
// Set of all not visited edges.
const notVisitedEdges = {};
graph.getAllEdges().forEach((vertex) => {
notVisitedEdges[vertex.getKey()] = vertex;
});
// Detect whether graph contains Eulerian Circuit or Eulerian Path or none of them.
/** @params {GraphVertex} vertex */
graph.getAllVertices().forEach((vertex) => {
if (vertex.getDegree() % 2) {
oddRankVertices[vertex.getKey()] = vertex;
} else {
evenRankVertices[vertex.getKey()] = vertex;
}
});
// Check whether we're dealing with Eulerian Circuit or Eulerian Path only.
// Graph would be an Eulerian Circuit in case if all its vertices has even degree.
// If not all vertices have even degree then graph must contain only two odd-degree
// vertices in order to have Euler Path.
const isCircuit = !Object.values(oddRankVertices).length;
if (!isCircuit && Object.values(oddRankVertices).length !== 2) {
throw new Error('Eulerian path must contain two odd-ranked vertices');
}
// Pick start vertex for traversal.
let startVertex = null;
if (isCircuit) {
// For Eulerian Circuit it doesn't matter from what vertex to start thus we'll just
// peek a first node.
const evenVertexKey = Object.keys(evenRankVertices)[0];
startVertex = evenRankVertices[evenVertexKey];
} else {
// For Eulerian Path we need to start from one of two odd-degree vertices.
const oddVertexKey = Object.keys(oddRankVertices)[0];
startVertex = oddRankVertices[oddVertexKey];
}
// Start traversing the graph.
let currentVertex = startVertex;
while (Object.values(notVisitedEdges).length) {
// Add current vertex to Eulerian path.
eulerianPathVertices.push(currentVertex);
// Detect all bridges in graph.
// We need to do it in order to not delete bridges if there are other edges
// exists for deletion.
const bridges = graphBridges(graph);
// Peek the next edge to delete from graph.
const currentEdges = currentVertex.getEdges();
/** @var {GraphEdge} edgeToDelete */
let edgeToDelete = null;
if (currentEdges.length === 1) {
// If there is only one edge left we need to peek it.
[edgeToDelete] = currentEdges;
} else {
// If there are many edges left then we need to peek any of those except bridges.
[edgeToDelete] = currentEdges.filter((edge) => !bridges[edge.getKey()]);
}
// Detect next current vertex.
if (currentVertex.getKey() === edgeToDelete.startVertex.getKey()) {
currentVertex = edgeToDelete.endVertex;
} else {
currentVertex = edgeToDelete.startVertex;
}
// Delete edge from not visited edges set.
delete notVisitedEdges[edgeToDelete.getKey()];
// If last edge were deleted then add finish vertex to Eulerian Path.
if (Object.values(notVisitedEdges).length === 0) {
eulerianPathVertices.push(currentVertex);
}
// Delete the edge from graph.
graph.deleteEdge(edgeToDelete);
}
return eulerianPathVertices;
}