forked from ICCC-Platform/PTGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_cam.py
216 lines (187 loc) · 8.38 KB
/
train_cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import logging
import time
from torch.backends import cudnn
from utils.logger import setup_logger
from datasets import make_dataloader
from model import make_model
from solver import make_optimizer, WarmupMultiStepLR
from loss import make_loss
import random
import torch
import numpy as np
import argparse
from timm.scheduler import create_scheduler
from config import cfg
from timm.data import Mixup
from torch.nn.parallel import DistributedDataParallel
from torch.cuda import amp
from utils.meter import AverageMeter
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def do_train(cfg,
model,
center_criterion,
train_loader,
val_loader,
optimizer,
optimizer_center,
scheduler,
loss_fn,
num_query,
local_rank,
):
log_period = cfg.SOLVER.LOG_PERIOD
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
device = "cuda"
epochs = cfg.SOLVER.MAX_EPOCHS
logger = logging.getLogger("reid_baseline.train")
logger.info('start training')
_LOCAL_PROCESS_GROUP = None
if device:
model.to(local_rank)
if torch.cuda.device_count() > 1 and cfg.MODEL.DIST_TRAIN:
print('Using {} GPUs for training'.format(torch.cuda.device_count()))
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], find_unused_parameters=True)
scaler = amp.GradScaler()
loss_meter = AverageMeter()
acc_meter = AverageMeter()
# train
for epoch in range(1, epochs + 1):
start_time = time.time()
loss_meter.reset()
acc_meter.reset()
scheduler.step(epoch)
model.train()
for n_iter, (img, vid, target_cam) in enumerate(train_loader):
optimizer.zero_grad()
optimizer_center.zero_grad()
img = img.to(device)
target_cam = target_cam.to(device)
if cfg.SOLVER.FP16_ENABLED:
#### FP16 training
with amp.autocast(enabled=True):
score, feat = model(img, target_cam , cam_label=None)
loss = loss_fn(score, feat, target_cam)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
score, feat = model(img, target_cam , cam_label=None)
loss = loss_fn(score, feat, target_cam, target_cam)
loss.backward()
optimizer.step()
if isinstance(score, list):
acc = (score[0].max(1)[1] == target_cam).float().mean()
else:
acc = (score.max(1)[1] == target_cam).float().mean()
loss_meter.update(loss.item(), img.shape[0])
acc_meter.update(acc, 1)
torch.cuda.synchronize()
if (n_iter + 1) % log_period == 0:
base_lr = scheduler._get_lr(epoch)[0] if cfg.SOLVER.WARMUP_METHOD == 'cosine' else scheduler.get_lr()[0]
logger.info("Epoch[{}] Iteration[{}/{}] Loss: {:.3f}, Acc: {:.3f}, Base Lr: {:.2e}"
.format(epoch, (n_iter + 1), len(train_loader), loss_meter.avg, acc_meter.avg, base_lr))
end_time = time.time()
time_per_batch = (end_time - start_time) / (n_iter + 1)
if cfg.MODEL.DIST_TRAIN:
pass
else:
logger.info("Epoch {} done. Time per batch: {:.3f}[s] Speed: {:.1f}[samples/s]"
.format(epoch, time_per_batch, train_loader.batch_size / time_per_batch))
if epoch % checkpoint_period == 0:
if cfg.MODEL.DIST_TRAIN:
if dist.get_rank() == 0:
torch.save(model.module.state_dict(),
os.path.join(cfg.OUTPUT_DIR, cfg.MODEL.NAME + '_{}.pth'.format(epoch)))
else:
torch.save(model.state_dict(),
os.path.join(cfg.OUTPUT_DIR, cfg.MODEL.NAME + '_{}.pth'.format(epoch)))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="ReID Baseline Training")
parser.add_argument(
"--config_file", default="", help="path to config file", type=str
)
parser.add_argument("opts", help="Modify config options using the command-line", default=None,
nargs=argparse.REMAINDER)
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
# parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
# help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
parser.add_argument('--epochs', default=120, type=int)
parser.add_argument("--local_rank", default=0, type=int)
args = parser.parse_args()
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
set_seed(cfg.SOLVER.SEED)
if cfg.MODEL.DIST_TRAIN:
torch.cuda.set_device(args.local_rank)
else:
pass
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = setup_logger("reid_baseline", output_dir, if_train=True)
logger.info("Saving model in the path :{}".format(cfg.OUTPUT_DIR))
# logger.info(args)
if args.config_file != "":
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = "\n" + cf.read()
# logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
if cfg.MODEL.DIST_TRAIN:
torch.distributed.init_process_group(backend='nccl', init_method='env://')
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
train_loader, val_loader, num_query, num_classes = make_dataloader(cfg)
model = make_model(cfg, num_class=num_classes)
loss_func, center_criterion = make_loss(cfg, num_classes=num_classes)
optimizer, optimizer_center = make_optimizer(cfg, model, center_criterion)
args.sched = cfg.SOLVER.WARMUP_METHOD
args.epochs = cfg.SOLVER.MAX_EPOCHS
args.warmup_epochs = cfg.SOLVER.WARMUP_EPOCHS
if args.sched == 'cosine':
print('===========using cosine learning rate=======')
scheduler, _ = create_scheduler(args, optimizer)
else:
print('===========using normal learning rate=======')
scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA,
cfg.SOLVER.WARMUP_FACTOR,
cfg.SOLVER.WARMUP_EPOCHS, cfg.SOLVER.WARMUP_METHOD)
do_train(
cfg,
model,
center_criterion,
train_loader,
val_loader,
optimizer,
optimizer_center,
scheduler, # modify for using self trained model
loss_func,
num_query, args.local_rank
)
print(cfg.OUTPUT_DIR)