diff --git a/bin/concordance_calculations_donor_exclusive_read_level_noA2G.py b/bin/concordance_calculations_donor_exclusive_read_level_noA2G.py index d711e054..cc9ebc64 100755 --- a/bin/concordance_calculations_donor_exclusive_read_level_noA2G.py +++ b/bin/concordance_calculations_donor_exclusive_read_level_noA2G.py @@ -72,6 +72,8 @@ def get_strict_discordance(self, snp_gtypes, cellsnp_gtypes): true_discordant = 0 relaxed_concordant = 0 relaxed_concordant_informative = 0 + relaxed_concordant_uninformative = 0 + true_discordant_informative = 0 true_discordant_uninformative = 0 for i in range(0, len(snp_gtypes)): @@ -105,12 +107,16 @@ def get_strict_discordance(self, snp_gtypes, cellsnp_gtypes): true_discordant+=1 if snp_var in self.uninformative_sites: true_discordant_uninformative+=1 + elif snp_var in self.informative_sites: + true_discordant_informative+=1 else: relaxed_concordant+=1 - if snp_var in self.informative_sites: + if snp_var in self.uninformative_sites: + relaxed_concordant_uninformative+=1 + elif snp_var in self.informative_sites: relaxed_concordant_informative+=1 - return true_discordant, relaxed_concordant, relaxed_concordant_informative, true_discordant_uninformative + return true_discordant, relaxed_concordant, relaxed_concordant_informative, relaxed_concordant_uninformative, true_discordant_informative, true_discordant_uninformative def read_condordance(self, expected_vars, cell_vars): @@ -129,38 +135,76 @@ def read_condordance(self, expected_vars, cell_vars): cell_vars['DP'] = cell_vars[0].str.split("_").str[5].astype(int) cell_vars['AD'] = cell_vars[0].str.split("_").str[6].astype(int) cell_vars['OTH'] = cell_vars[0].str.split("_").str[7].astype(int) + #split to informative and uninformative sites + mask_i = cell_vars['ids'].isin(self.informative_sites) + cell_vars_informative = cell_vars[mask_i] + mask_u = cell_vars['ids'].isin(self.uninformative_sites) + cell_vars_uninformative = cell_vars[mask_u] + informative_sites = len(cell_vars_informative) + uninformative_sites = len(cell_vars_uninformative) + total_dp = cell_vars['DP'].sum() total_oth = cell_vars['OTH'].sum() total_reads = total_dp + total_oth + total_dp_inf = cell_vars_informative['DP'].sum() + total_oth_inf = cell_vars_informative['OTH'].sum() + total_reads_informative = total_dp_inf + total_oth_inf + total_dp_uninf = cell_vars_uninformative['DP'].sum() + total_oth_uninf = cell_vars_uninformative['OTH'].sum() + total_reads_uninformative = total_dp_uninf + total_oth_uninf # expected genotype 0/0 expected_hom_ref = expected_vars[expected_vars['vars'] == '0/0'] hom_ref_sites = set(expected_hom_ref['ids']) cell_vars2 = cell_vars[cell_vars['ids'].isin(hom_ref_sites)] + cell_vars_inf_2 = cell_vars_informative[cell_vars_informative['ids'].isin(hom_ref_sites)] + cell_vars_uninf_2 = cell_vars_uninformative[cell_vars_uninformative['ids'].isin(hom_ref_sites)] ad_hom_ref = cell_vars2['AD'].sum() oth_hom_ref = cell_vars2['OTH'].sum() discordant_hom_ref = ad_hom_ref + oth_hom_ref + ad_hom_ref_inf = cell_vars_inf_2['AD'].sum() + oth_hom_ref_inf = cell_vars_inf_2['OTH'].sum() + discordant_hom_ref_informative = ad_hom_ref_inf + oth_hom_ref_inf + ad_hom_ref_uninf = cell_vars_uninf_2['AD'].sum() + oth_hom_ref_uninf = cell_vars_uninf_2['OTH'].sum() + discordant_hom_ref_uninformative = ad_hom_ref_uninf + oth_hom_ref_uninf # expected genotype 0/1 or 1/0 hets = ['0/1', '1/0'] expected_het = expected_vars[expected_vars['vars'].isin(hets)] het_sites = set(expected_het['ids']) cell_vars3 = cell_vars[cell_vars['ids'].isin(het_sites)] + cell_vars_inf_3 = cell_vars_informative[cell_vars_informative['ids'].isin(het_sites)] + cell_vars_uninf_3 = cell_vars_uninformative[cell_vars_uninformative['ids'].isin(het_sites)] discordant_het = cell_vars3['OTH'].sum() + discordant_het_informative = cell_vars_inf_3['OTH'].sum() + discordant_het_uninformative = cell_vars_uninf_3['OTH'].sum() # expected genotype 1/1 expected_hom_alt = expected_vars[expected_vars['vars'] == '1/1'] hom_alt_sites = set(expected_hom_alt['ids']) cell_vars4 = cell_vars[cell_vars['ids'].isin(hom_alt_sites)] + cell_vars_inf_4 = cell_vars_informative[cell_vars_informative['ids'].isin(hom_alt_sites)] + cell_vars_uninf_4 = cell_vars_uninformative[cell_vars_uninformative['ids'].isin(hom_alt_sites)] # DP + OTH - AD ad_hom_alt = cell_vars4['AD'].sum() dp_hom_alt = cell_vars4['DP'].sum() oth_hom_alt = cell_vars4['OTH'].sum() discordant_hom_alt = (dp_hom_alt + oth_hom_alt) - ad_hom_alt + ad_hom_alt_inf = cell_vars_inf_4['AD'].sum() + dp_hom_alt_inf = cell_vars_inf_4['DP'].sum() + oth_hom_alt_inf = cell_vars_inf_4['OTH'].sum() + discordant_hom_alt_informative = (dp_hom_alt_inf + oth_hom_alt_inf) - ad_hom_alt_inf + ad_hom_alt_uninf = cell_vars_uninf_4['AD'].sum() + dp_hom_alt_uninf = cell_vars_uninf_4['DP'].sum() + oth_hom_alt_uninf = cell_vars_uninf_4['OTH'].sum() + discordant_hom_alt_uninformative = (dp_hom_alt_uninf + oth_hom_alt_uninf) - ad_hom_alt_uninf discordant_reads = discordant_hom_ref + discordant_het + discordant_hom_alt + discordant_reads_informative = discordant_hom_ref_informative + discordant_het_informative + discordant_hom_alt_informative + discordant_reads_uninformative = discordant_hom_ref_uninformative + discordant_het_uninformative + discordant_hom_alt_uninformative - return total_sites, total_reads, discordant_reads + return total_sites, informative_sites, uninformative_sites, total_reads, discordant_reads, total_reads_informative, discordant_reads_informative, total_reads_uninformative, discordant_reads_uninformative def retrieve_concordant_discordant_sites(self,expected_vars_norm,cell_vars): @@ -171,28 +215,28 @@ def retrieve_concordant_discordant_sites(self,expected_vars_norm,cell_vars): cell_vars_norm = self.norm_genotypes(cell_vars) if len(cell_vars_norm) > 0: - Total_Overlappin_sites = set(expected_vars_norm['ids']).intersection(set(cell_vars_norm['ids'])) - expected_vars2 = expected_vars_norm[expected_vars_norm['ids'].isin(Total_Overlappin_sites)] - cell_vars2 = cell_vars_norm[cell_vars_norm['ids'].isin(Total_Overlappin_sites)] + Total_Overlapping_sites = set(expected_vars_norm['ids']).intersection(set(cell_vars_norm['ids'])) + expected_vars2 = expected_vars_norm[expected_vars_norm['ids'].isin(Total_Overlapping_sites)] + cell_vars2 = cell_vars_norm[cell_vars_norm['ids'].isin(Total_Overlapping_sites)] # print(cell_vars_norm) # print(expected_vars2) # print(cell_vars2) # exit(0) Concordant_Sites = set(cell_vars2['combo']).intersection(set(expected_vars2['combo'])) - Discodrant_sites = set(cell_vars2['combo'])-set(expected_vars2['combo']) - disc = pd.DataFrame(Discodrant_sites,columns=['combo_x']) + Discordant_sites = set(cell_vars2['combo'])-set(expected_vars2['combo']) + disc = pd.DataFrame(Discordant_sites,columns=['combo_x']) df_cd = pd.merge(cell_vars2, expected_vars2, how='inner', on = 'pos') disc2= pd.merge(disc, df_cd, how='inner', on = 'combo_x') disc2['expected_retrieved'] = disc2['0_x']+'::'+disc2['0_y'] disc_sites = ';'.join(disc2['expected_retrieved']) #find truly discordant sites - true_discordant_count, relaxed_concordant_count, relaxed_concordant_informative_count, true_discordant_uninformative_count = self.get_strict_discordance(disc2['0_y'], disc2['0_x']) + true_discordant_count, relaxed_concordant_count, relaxed_concordant_informative_count, relaxed_concordant_uninformative_count, true_discordant_informative_count, true_discordant_uninformative_count = self.get_strict_discordance(disc2['0_y'], disc2['0_x']) #find discordant reads - total_sites, total_reads, discordant_reads = self.read_condordance(expected_vars2, cell_vars2) + total_sites, informative_sites, uninformative_sites, total_reads, discordant_reads, total_reads_informative, discordant_reads_informative, total_reads_uninformative, discordant_reads_uninformative = self.read_condordance(expected_vars2, cell_vars2) else: - Total_Overlappin_sites = set() + Total_Overlapping_sites = set() Concordant_Sites = set() - Discodrant_sites = set() + Discordant_sites = set() disc_sites = '' true_discordant_count = 0 relaxed_concordant_count = 0 @@ -200,7 +244,7 @@ def retrieve_concordant_discordant_sites(self,expected_vars_norm,cell_vars): discordant_reads = 0 - return Concordant_Sites, Discodrant_sites, Total_Overlappin_sites, disc_sites,cell_vars_norm, true_discordant_count, relaxed_concordant_count, relaxed_concordant_informative_count, true_discordant_uninformative_count, total_sites, total_reads, discordant_reads + return Concordant_Sites, Discordant_sites, Total_Overlapping_sites, disc_sites,cell_vars_norm, true_discordant_count, relaxed_concordant_count, relaxed_concordant_informative_count, relaxed_concordant_uninformative_count, true_discordant_informative_count, true_discordant_uninformative_count, total_sites, informative_sites, uninformative_sites, total_reads, total_reads_informative, total_reads_uninformative, discordant_reads, discordant_reads_informative, discordant_reads_uninformative def set_results(self,to_set,id): @@ -210,7 +254,7 @@ def set_results(self,to_set,id): self.record_dict[id]=f'tmp_{id}.pkl' def append_results_cell_concordances(self,result): - count=result[11] + count=result[13] try: percent_concordant = result[2]/(result[3]+result[2])*100 except: @@ -232,13 +276,22 @@ def append_results_cell_concordances(self,result): percent_strict_discordant = 0 try: - read_discordance = result[15]/result[13] + read_discordance = result[21]/result[15] except: read_discordance = 0 + donor = result[1] + cohort = 'UNKNOWN' + donor_split = donor.split("_") + if (len(donor_split) == 2) and (donor_split[0] == donor_split[1]): + cohort = 'UKB' + elif (len(donor_split) == 3) and (len(donor_split[0]) == 14): + cohort = 'ELGH' + print(count) self.cell_concordance_table[f'{result[0]} --- {result[1]}'] = {'GT 1':result[0], 'GT 2':result[1], + 'cohort': cohort, 'Nr_Concordant':result[2], 'Nr_Discordant':result[3], 'Nr_Relaxed_concordant':result[4], @@ -248,14 +301,22 @@ def append_results_cell_concordances(self,result): 'Percent_relaxed_concordant': percent_relaxed_concordant, 'Percent_strict_discordant': percent_strict_discordant, 'Nr_concordant_informative': result[6], - 'Nr_discordant_uninformative': result[7], - 'NrTotal_Overlapping_sites_between_two_genotypes':result[8], - 'Nr_donor_distinct_sites_within_pool_individuals':result[10], - 'Number_of_sites_that_are_donor_concordant_and_exclusive':result[9], - 'Discordant_Site_Identities':result[12], - 'Total_sites': result[13], - 'Total_reads': result[14], - 'Discordant_reads': result[15], + 'Nr_concordant_uninformative': result[7], + 'Nr_discordant_informative': result[8], + 'Nr_discordant_uninformative': result[9], + 'NrTotal_Overlapping_sites_between_two_genotypes':result[10], + 'Nr_donor_distinct_sites_within_pool_individuals':result[12], + 'Number_of_sites_that_are_donor_concordant_and_exclusive':result[11], + 'Discordant_Site_Identities':result[14], + 'Total_sites': result[15], + 'Total_informative_sites': result[16], + 'Total_uninformative_sites': result[17], + 'Total_reads': result[18], + 'Total_reads_informative': result[19], + 'Total_reads_uninformative': result[20], + 'Discordant_reads': result[21], + 'Discordant_reads_informtive': result[22], + 'Discordant_reads_uninformtive': result[23], 'Discordant_reads_by_n_sites': read_discordance } @@ -320,16 +381,18 @@ def conc_table(self): def concordance_table_production(self,expected_vars_norm,cell_vars,cell1,donor_gt_match,dds,count): Nr_donor_distinct_sites = len(dds) - Concordant_Sites, Discodrant_sites, Total_Overlappin_sites,discordant_sites,cell_vars_norm, Nr_strict_discordant, relaxed_concordant_count, relaxed_concordant_informative_count, true_discordant_uninformative_count, total_sites, total_reads, discordant_reads = self.retrieve_concordant_discordant_sites(expected_vars_norm,cell_vars) + Concordant_Sites, Discordant_sites, Total_Overlapping_sites, disc_sites, cell_vars_norm, true_discordant_count, relaxed_concordant_count, relaxed_concordant_informative_count, relaxed_concordant_uninformative_count, true_discordant_informative_count, true_discordant_uninformative_count, total_sites, informative_sites, uninformative_sites, total_reads, total_reads_informative, total_reads_uninformative, discordant_reads, discordant_reads_informative, discordant_reads_uninformative = self.retrieve_concordant_discordant_sites(expected_vars_norm,cell_vars) Nr_Concordant = len(Concordant_Sites) Nr_Relaxed_concordant = Nr_Concordant + relaxed_concordant_count - Nr_Discordant = len(Discodrant_sites) - Nr_Total_Overlapping_sites = len(Total_Overlappin_sites) + Nr_Discordant = len(Discordant_sites) + Nr_Total_Overlapping_sites = len(Total_Overlapping_sites) Number_of_sites_that_are_donor_concordant_and_exclusive = len(set(dds).intersection(set(Concordant_Sites))) Number_of_sites_in_cellsnp_but_not_in_reference = set(cell_vars_norm['pos'])-set(expected_vars_norm['pos']) - return [cell1,donor_gt_match,Nr_Concordant,Nr_Discordant,Nr_Relaxed_concordant, Nr_strict_discordant, relaxed_concordant_informative_count, true_discordant_uninformative_count, Nr_Total_Overlapping_sites, - Number_of_sites_that_are_donor_concordant_and_exclusive, Nr_donor_distinct_sites,count,discordant_sites, total_sites, total_reads, discordant_reads] + return [cell1,donor_gt_match,Nr_Concordant,Nr_Discordant,Nr_Relaxed_concordant, true_discordant_count, relaxed_concordant_informative_count, + relaxed_concordant_uninformative_count, true_discordant_informative_count, true_discordant_uninformative_count, Nr_Total_Overlapping_sites, + Number_of_sites_that_are_donor_concordant_and_exclusive, Nr_donor_distinct_sites,count,disc_sites, total_sites, informative_sites, + uninformative_sites, total_reads, total_reads_informative, total_reads_uninformative, discordant_reads, discordant_reads_informative, discordant_reads_uninformative] class VCF_Loader: @@ -549,6 +612,7 @@ def get_options(): parser.add_argument('--expected_vcf', action='store', required=True) parser.add_argument('--informative_sites', action='store', required=True) parser.add_argument('--uninformative_sites', action='store', required=True) + parser.add_argument('--outfile', action='store', required=True) args = parser.parse_args() return args @@ -621,6 +685,7 @@ def donor_exclusive_sites(exclusive_don_variants2): options = get_options() cpus = options.cpus + outfile = options.outfile cell_vcf=options.cell_vcf donor_assignments=options.donor_assignments gt_match_vcf=options.gt_match_vcf @@ -715,6 +780,6 @@ def donor_exclusive_sites(exclusive_don_variants2): # cell_concordance_table = conc_table(donor_assignments_table,cell_assignments_table,exclusive_don_variants,exclusive_cell_variants) result = pd.DataFrame(cell_concordance_table).T - result.to_csv('cell_concordance_table_noA2G.tsv',sep='\t') + result.to_csv(outfile,sep='\t') print('Processing Done')