forked from NVIDIA/ChatRTX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
faiss_vector_storage.py
99 lines (92 loc) · 4.58 KB
/
faiss_vector_storage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# SPDX-FileCopyrightText: Copyright (c) 2023-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import faiss
import os
import shutil
import gc
import torch
from llama_index.vector_stores import FaissVectorStore
from llama_index import VectorStoreIndex, SimpleDirectoryReader, Document
from llama_index import StorageContext, load_index_from_storage
class FaissEmbeddingStorage:
def __init__(self, data_dir, dimension):
self.d = dimension
self.data_dir = data_dir
self.engine = None
self.persist_dir = f"{self.data_dir}_vector_embedding"
def initialize_index(self, force_rewrite=False):
# Check if the persist directory exists and delete it if force_rewrite is true
if force_rewrite and os.path.exists(self.persist_dir):
print("Deleting existing directory for a fresh start.")
self.delete_persist_dir()
if os.path.exists(self.persist_dir) and os.listdir(self.persist_dir):
print("Using the persisted value form " + self.persist_dir)
vector_store = FaissVectorStore.from_persist_dir(self.persist_dir)
storage_context = StorageContext.from_defaults(
vector_store=vector_store, persist_dir=self.persist_dir
)
self.index = load_index_from_storage(storage_context=storage_context)
else:
print("Generating new values")
torch.cuda.empty_cache()
gc.collect()
try:
if os.path.exists(self.data_dir) and os.listdir(self.data_dir):
file_metadata = lambda x: {"filename": x}
documents = SimpleDirectoryReader(self.data_dir, file_metadata=file_metadata,
recursive=True, required_exts= [".pdf", ".doc", ".docx", ".txt", ".xml"]).load_data()
else:
print("No files found in the directory. Initializing an empty index.")
documents = []
except Exception as e:
documents = []
print(f"Error occurred while initializing index: {str(e)}")
faiss_index = faiss.IndexFlatL2(self.d)
#faiss_index = faiss.IndexFlatIP(self.d)
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context ,show_progress = True)
index.storage_context.persist(persist_dir=self.persist_dir)
self.index = index
torch.cuda.empty_cache()
gc.collect()
def delete_persist_dir(self):
if os.path.exists(self.persist_dir) and os.path.isdir(self.persist_dir):
try:
shutil.rmtree(self.persist_dir)
except Exception as e:
print(f"Error occurred while deleting directory: {str(e)}")
def get_engine(self,is_chat_engine ,streaming , similarity_top_k):
if is_chat_engine == True:
self.engine = self.index.as_chat_engine(
chat_mode="condense_question",
streaming=streaming,
similarity_top_k = similarity_top_k
)
else:
query_engine = self.index.as_query_engine(
streaming=streaming,
similarity_top_k = similarity_top_k,
)
self.engine = query_engine
return self.engine
def reset_engine(self, engine):
engine.reset()