-
Notifications
You must be signed in to change notification settings - Fork 68
/
se3_tracknet.py
123 lines (103 loc) · 4.29 KB
/
se3_tracknet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#
# Authors: Bowen Wen
# Contact: [email protected]
# Created in 2020
#
# Copyright (c) Rutgers University, 2020 All rights reserved.
#
# Wen, B., C. Mitash, B. Ren, and K. E. Bekris. "se (3)-TrackNet:
# Data-driven 6D Pose Tracking by Calibrating Image Residuals in
# Synthetic Domains." In IEEE/RSJ International Conference on Intelligent
# Robots and Systems (IROS). 2020.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the PRACSYS, Bowen Wen, Rutgers University,
# nor the names of its contributors may be used to
# endorse or promote products derived from this software without
# specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
import os,sys
import numpy as np
dir_path = os.path.dirname(os.path.realpath(__file__))
import torch.nn.functional as F
import torch
import torch.nn as nn
from torch.autograd import Variable
import time
from torch import optim
import torchvision.models as models
import cv2
from network_modules import *
from torchvision import models
class Se3TrackNet(nn.Module):
def __init__(self, image_size=174):
super().__init__()
self.rot_dim = 3
self.convA1 = ConvBNReLU(C_in=4,C_out=64,kernel_size=7,stride=2)
self.poolA1 = nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
self.convA2 = ResnetBasicBlock(64,64,bias=True)
self.convB1 = ConvBNReLU(C_in=4,C_out=64,kernel_size=7,stride=2)
self.poolB1 = nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
self.convB2 = ResnetBasicBlock(64,64,bias=True)
self.convB3 = ResnetBasicBlock(64,64,bias=True)
self.convAB1 = ConvBNReLU(128,256,kernel_size=3,stride=2)
self.convAB2 = ResnetBasicBlock(256,256,bias=True)
self.convAB2 = ResnetBasicBlock(256,256,bias=True)
self.trans_conv1 = ConvBNReLU(256,512,kernel_size=3,stride=2)
self.trans_conv2 = ResnetBasicBlock(512,512,bias=True)
self.trans_pool1 = nn.AdaptiveAvgPool2d(1)
self.trans_out = nn.Sequential(nn.Linear(512,3),nn.Tanh())
self.rot_conv1 = ConvBNReLU(256,512,kernel_size=3,stride=2)
self.rot_conv2 = ResnetBasicBlock(512,512,bias=True)
self.rot_pool1 = nn.AdaptiveAvgPool2d(1)
self.rot_out = nn.Sequential(nn.Linear(512,self.rot_dim),nn.Tanh())
def forward(self, A, B):
batch_size = A.shape[0]
output = {}
a = self.convA1(A)
a = self.poolA1(a)
a = self.convA2(a)
b = self.convB1(B)
b = self.poolB1(b)
b = self.convB2(b)
b = self.convB3(b)
ab = torch.cat((a,b),1).contiguous()
ab = self.convAB1(ab)
ab = self.convAB2(ab)
output['feature'] = ab
trans = self.trans_conv1(ab)
trans = self.trans_conv2(trans)
trans = self.trans_pool1(trans)
trans = trans.reshape(batch_size,-1)
trans = self.trans_out(trans).contiguous()
output['trans'] = trans
rot = self.rot_conv1(ab)
rot = self.rot_conv2(rot)
rot = self.rot_pool1(rot)
rot = rot.reshape(batch_size,-1)
rot = self.rot_out(rot).contiguous()
output['rot'] = rot
return output
def loss(self, predictions, targets):
output = {}
trans_loss = nn.MSELoss()(predictions[0].float(), targets[0].float())
rot_loss = nn.MSELoss()(predictions[1].float(), targets[1].float())
output['trans'] = trans_loss
output['rot'] = rot_loss
return output