-
Notifications
You must be signed in to change notification settings - Fork 62
/
prepare_colmap.py
334 lines (294 loc) · 12.7 KB
/
prepare_colmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# %%
import os
import pandas as pd
import json
import numpy as np
import argparse
import struct
import collections
# %%
parser = argparse.ArgumentParser("Prepare dataset for 3D Gaussian Splatting from COLMAP text output")
parser.add_argument("--base_path", type=str, required=True, help="Path to the COLMAP output folder, containing cameras.txt, images.txt, points3D.txt")
parser.add_argument("--image_path", type=str, required=True, help="Path to the COLMAP Image folder")
parser.add_argument("--test_image_list_path", type=str, default=None, help="Path to the test image list")
parser.add_argument("--output_dir", type=str, required=True, help="Path to the output folder")
args = parser.parse_args()
base_path = args.base_path
image_path = args.image_path
output_dir = args.output_dir
test_image_list_path = args.test_image_list_path
# %%
def read_images_txt(file):
with open(file, 'r') as f:
lines = f.readlines()
# Skip the header lines
lines = lines[4:]
images = {}
for i in range(0, len(lines), 2):
fields = lines[i].split()
image_id = int(fields[0])
qvec = list(map(float, fields[1:5]))
tvec = list(map(float, fields[5:8]))
camera_id = int(fields[8])
name = " ".join(fields[9:]) # 这里处理文件名中可能包含空格的情况
images[name] = {'qvec': qvec, 'tvec': tvec, 'camera_id': camera_id}
return images
def read_images_binary(path_to_model_file):
images = {}
with open(path_to_model_file, "rb") as fid:
num_reg_images = read_next_bytes(fid, 8, "Q")[0]
for _ in range(num_reg_images):
binary_image_properties = read_next_bytes(
fid, num_bytes=64, format_char_sequence="idddddddi")
image_id = binary_image_properties[0]
qvec = np.array(binary_image_properties[1:5])
tvec = np.array(binary_image_properties[5:8])
camera_id = binary_image_properties[8]
image_name = ""
current_char = read_next_bytes(fid, 1, "c")[0]
while current_char != b"\x00": # look for the ASCII 0 entry
image_name += current_char.decode("utf-8")
current_char = read_next_bytes(fid, 1, "c")[0]
num_points2D = read_next_bytes(fid, num_bytes=8,
format_char_sequence="Q")[0]
x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D,
format_char_sequence="ddq"*num_points2D)
images[image_name] = {'qvec': qvec, 'tvec': tvec, 'camera_id': camera_id}
return images
def parse_parameters_dict(row):
params = row['params']
model = row['model']
if model == 'SIMPLE_RADIAL':
return {'f': params[0], 'cx': params[1], 'cy': params[2], 'k1': params[3]}
elif model == 'RADIAL':
return {'f': params[0], 'cx': params[1], 'cy': params[2], 'k1': params[3], 'k2': params[4]}
elif model == 'PINHOLE':
return {'fx': params[0], 'fy': params[1], 'cx': params[2], 'cy': params[3]}
else:
return {'params': params}
def get_intrinsic_matrix(params):
if 'f' in params: # For SIMPLE_RADIAL and RADIAL models
f = params['f']
cx = params['cx']
cy = params['cy']
return np.array([[f, 0, cx], [0, f, cy], [0, 0, 1]])
elif 'fx' in params: # For PINHOLE model
fx = params['fx']
fy = params['fy']
cx = params['cx']
cy = params['cy']
return np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
else:
return None
def read_cameras_txt(file):
with open(file, 'r') as f:
lines = f.readlines()
# Skip the header lines
lines = lines[3:]
data = {}
for line in lines:
fields = line.split()
camera_id = int(fields[0])
model = fields[1]
width = int(fields[2])
height = int(fields[3])
params = [float(x) for x in fields[4:]]
data[camera_id] = {'model': model, 'width': width, 'height': height, 'params': params}
df = pd.DataFrame.from_dict(data, orient='index')
df['params_dict'] = df.apply(parse_parameters_dict, axis=1)
df['K'] = df['params_dict'].apply(get_intrinsic_matrix)
return df
CameraModel = collections.namedtuple(
"CameraModel", ["model_id", "model_name", "num_params"])
CAMERA_MODELS = {
CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
CameraModel(model_id=3, model_name="RADIAL", num_params=5),
CameraModel(model_id=4, model_name="OPENCV", num_params=8),
CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
CameraModel(model_id=7, model_name="FOV", num_params=5),
CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12)
}
CAMERA_MODEL_IDS = dict([(camera_model.model_id, camera_model)
for camera_model in CAMERA_MODELS])
def read_cameras_binary(path_to_model_file):
"""
from original code for gaussian splatting
"""
data = {}
with open(path_to_model_file, "rb") as fid:
num_cameras = read_next_bytes(fid, 8, "Q")[0]
for _ in range(num_cameras):
camera_properties = read_next_bytes(
fid, num_bytes=24, format_char_sequence="iiQQ")
camera_id = camera_properties[0]
model_id = camera_properties[1]
model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
width = camera_properties[2]
height = camera_properties[3]
num_params = CAMERA_MODEL_IDS[model_id].num_params
params = read_next_bytes(fid, num_bytes=8*num_params,
format_char_sequence="d"*num_params)
data[camera_id] = {'model': model_name, 'width': width, 'height': height, 'params': params}
assert len(data) == num_cameras
df = pd.DataFrame.from_dict(data, orient='index')
df['params_dict'] = df.apply(parse_parameters_dict, axis=1)
df['K'] = df['params_dict'].apply(get_intrinsic_matrix)
return df
def read_points3D_txt(file):
with open(file, 'r') as f:
lines = f.readlines()
# Skip the header lines
lines = lines[3:]
data = {}
for line in lines:
fields = line.split()
point3d_id = int(fields[0])
x, y, z = map(float, fields[1:4])
r, g, b = map(int, fields[4:7])
error = float(fields[7])
track = list(zip(map(int, fields[8::2]), map(int, fields[9::2])))
data[point3d_id] = {'x': x, 'y': y, 'z': z, 'r': r, 'g': g, 'b': b, 'error': error, 'track': track}
return pd.DataFrame.from_dict(data, orient='index')
def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
"""Read and unpack the next bytes from a binary file.
:param fid:
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
:param endian_character: Any of {@, =, <, >, !}
:return: Tuple of read and unpacked values.
"""
data = fid.read(num_bytes)
return struct.unpack(endian_character + format_char_sequence, data)
def read_points3D_binary(path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadPoints3DBinary(const std::string& path)
void Reconstruction::WritePoints3DBinary(const std::string& path)
"""
with open(path_to_model_file, "rb") as fid:
num_points = read_next_bytes(fid, 8, "Q")[0]
"""
xyzs = np.empty((num_points, 3))
rgbs = np.empty((num_points, 3))
errors = np.empty((num_points, 1))
"""
data = {}
for p_id in range(num_points):
binary_point_line_properties = read_next_bytes(
fid, num_bytes=43, format_char_sequence="QdddBBBd")
xyz = binary_point_line_properties[1:4]
rgb = binary_point_line_properties[4:7]
error = binary_point_line_properties[7]
track_length = read_next_bytes(
fid, num_bytes=8, format_char_sequence="Q")[0]
track_elems = read_next_bytes(
fid, num_bytes=8*track_length,
format_char_sequence="ii"*track_length)
data[p_id] = {'x': xyz[0], 'y': xyz[1], 'z': xyz[2], 'r': rgb[0], 'g': rgb[1], 'b': rgb[2], 'error': error, 'track': track_elems}
return pd.DataFrame.from_dict(data, orient='index')
def quaternion_to_rotation_matrix(q):
w, x, y, z = q
return np.array([
[1 - 2*y**2 - 2*z**2, 2*x*y - 2*z*w, 2*x*z + 2*y*w],
[2*x*y + 2*z*w, 1 - 2*x**2 - 2*z**2, 2*y*z - 2*x*w],
[2*x*z - 2*y*w, 2*y*z + 2*x*w, 1 - 2*x**2 - 2*y**2]
])
# if binary exists, read binary, otherwise read txt
if os.path.exists(os.path.join(base_path, 'images.bin')):
images = read_images_binary(os.path.join(base_path, 'images.bin'))
else:
images = read_images_txt(os.path.join(base_path, 'images.txt'))
if os.path.exists(os.path.join(base_path, 'cameras.bin')):
cameras = read_cameras_binary(os.path.join(base_path, 'cameras.bin'))
else:
cameras = read_cameras_txt(os.path.join(base_path, 'cameras.txt'))
if os.path.exists(os.path.join(base_path, 'points3D.bin')):
points = read_points3D_binary(os.path.join(base_path, 'points3D.bin'))
elif os.path.exists(os.path.join(base_path, 'points3d.bin')):
points = read_points3D_binary(os.path.join(base_path, 'points3d.bin'))
elif os.path.exists(os.path.join(base_path, 'points3D.txt')):
points = read_points3D_txt(os.path.join(base_path, 'points3D.txt'))
else:
points = read_points3D_txt(os.path.join(base_path, 'points3d.txt'))
point_cloud = points[['x', 'y', 'z']].values
point_cloud = point_cloud.T
point_cloud_color = points[['r', 'g', 'b']].values
point_cloud_color = point_cloud_color.T
print(point_cloud.shape)
print(point_cloud_color.shape)
data = []
idx = 0
for name, image in images.items():
idx += 1
camera = cameras.loc[int(image['camera_id'])]
# Extract quaternion and translation vector
qvec = np.array(image['qvec'])
tvec = np.array(image['tvec'])
# Convert quaternion to rotation matrix
R = np.zeros((4, 4))
R[:3, :3] = quaternion_to_rotation_matrix(qvec)
R[:3, 3] = tvec
R[3, 3] = 1.0
T_pointcloud_camera = np.linalg.inv(R)
K = camera['K']
# Construct the JSON data
image_full_path = os.path.join(image_path, name)
data.append({
'image_path': image_full_path,
'T_pointcloud_camera': T_pointcloud_camera.tolist(),
'camera_intrinsics': camera['K'].tolist(),
'camera_height': camera['height'],
'camera_width': camera['width'],
'camera_id': camera.name,
})
"""
print(data[-1])
import matplotlib.pyplot as plt
image = plt.imread(image_full_path)
point_cloud_camera = np.linalg.inv(T_pointcloud_camera) @ \
np.concatenate([point_cloud, np.ones_like(point_cloud[:1, :])], axis=0)
point_cloud_camera = point_cloud_camera[:3, :]
point_cloud_depth = point_cloud_camera[2, :]
# print(point_cloud_depth.mean())
point_cloud_uv1 = (camera["K"] @ point_cloud_camera) / \
point_cloud_camera[2, :]
point_cloud_uv = point_cloud_uv1[:2, :].T
plt.imshow(image)
plt.scatter(point_cloud_uv[:, 0], point_cloud_uv[:, 1], s=1)
# scatter with color
# plt.scatter(point_cloud_uv[:, 0], point_cloud_uv[:, 1], s=1, c=point_cloud_color.T/255)
plt.xlim([0, camera["width"]])
plt.ylim([camera["height"], 0])
plt.show()
break
"""
df = pd.DataFrame(data)
if test_image_list_path is not None:
with open(test_image_list_path, "r") as f:
test_images = f.readlines()
test_images = [x.strip() for x in test_images]
df["is_train"] = df["image_path"].apply(lambda x: os.path.basename(x) not in test_images)
else:
# taking every 8th photo for test,
df["is_train"] = df.index % 8 != 0
# test_images = [f"00{idx}.png" for idx in range(175, 250)]
# select training data and validation data, have a val every 3 frames
train_df = df[df["is_train"]].copy()
val_df = df[~df["is_train"]].copy()
print(train_df.shape)
print(val_df.shape)
# %%
train_df.drop(columns=["is_train"], inplace=True)
val_df.drop(columns=["is_train"], inplace=True)
# df.to_json(os.path.join(output_dir, "kitti.json"), orient="records")
train_df.to_json(os.path.join(
output_dir, "train.json"), orient="records")
val_df.to_json(os.path.join(output_dir, "val.json"), orient="records")
points.to_parquet(os.path.join(
output_dir, "point_cloud.parquet"))
# %%