(Mingshuang Luo): Result of k2-fsa#114
TensorBoard log is available at https://tensorboard.dev/experiment/qhA1o025Q322kO34SlhWzg/#scalars
Pretrained model is available at https://huggingface.co/luomingshuang/icefall_asr_timit_tdnn_lstm_ctc
The best decoding results (PER) are listed below, we got this results by averaging models from epoch 16 to 25, and using whole-lattice-rescoring
with lm_scale equals to 0.08.
TEST | |
---|---|
PER | 19.71% |
You can use the following commands to reproduce our results:
git clone https://github.com/k2-fsa/icefall
cd icefall
cd egs/timit/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0"
python tdnn_lstm_ctc/train.py --bucketing-sampler True \
--concatenate-cuts False \
--max-duration 200 \
--world-size 1 \
--lang-dir data/lang_phone
python tdnn_lstm_ctc/decode.py --epoch 25 \
--avg 10 \
--max-duration 20 \
--lang-dir data/lang_phone
(Mingshuang Luo): Result of phone based Tdnn_LiGRU_CTC model, k2-fsa#114
TensorBoard log is available at https://tensorboard.dev/experiment/IlQxeq5vQJ2SEVP94Y5fyg/#scalars
Pretrained model is available at https://huggingface.co/luomingshuang/icefall_asr_timit_tdnn_ligru_ctc
The best decoding results (PER) are listed below, we got this results by averaging models from epoch 9 to 25, and using whole-lattice-rescoring
decoding method with lm_scale equals to 0.1.
TEST | |
---|---|
PER | 17.66% |
You can use the following commands to reproduce our results:
git clone https://github.com/k2-fsa/icefall
cd icefall
cd egs/timit/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0"
python tdnn_ligru_ctc/train.py --bucketing-sampler True \
--concatenate-cuts False \
--max-duration 200 \
--world-size 1 \
--lang-dir data/lang_phone
python tdnn_ligru_ctc/decode.py --epoch 25 \
--avg 17 \
--max-duration 20 \
--lang-dir data/lang_phone