forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare.sh
executable file
·247 lines (214 loc) · 7.31 KB
/
prepare.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env bash
set -eou pipefail
nj=32
stage=-1
stop_stage=100
# Split data/set to a number of pieces
# This is to avoid OOM during feature extraction.
num_per_split=4000
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/peoples_speech
# This directory contains the following files downloaded from
# https://huggingface.co/datasets/MLCommons/peoples_speech
#
# - test
# - train
# - validation
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
# 1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/peoples_speech,
# you can create a symlink
#
# ln -sfv /path/to/peoples_speech $dl_dir/peoples_speech
#
if [ ! -d $dl_dir/peoples_speech/train ]; then
git lfs install
git clone https://huggingface.co/datasets/MLCommons/peoples_speech
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare People's Speech manifest"
# We assume that you have downloaded the People's Speech corpus
# to $dl_dir/peoples_speech
mkdir -p data/manifests
if [ ! -e data/manifests/.peoples_speech.done ]; then
lhotse prepare peoples-speech -j $nj $dl_dir/peoples_speech data/manifests
touch data/manifests/.peoples_speech.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Preprocess People's Speech manifest"
mkdir -p data/fbank
if [ ! -e data/fbank/.preprocess_complete ]; then
./local/preprocess_peoples_speech.py
touch data/fbank/.preprocess_complete
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for valid and test subsets of People's Speech"
if [ ! -e data/fbank/.peoples_speech_valid_test.done ]; then
./local/compute_fbank_peoples_speech_valid_test.py
touch data/fbank/.peoples_speech_valid_test.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Split train subset into pieces"
split_dir=data/fbank/peoples_speech_train_split
if [ ! -e $split_dir/.peoples_speech_dirty_split.done ]; then
lhotse split-lazy ./data/fbank/peoples_speech_cuts_dirty_raw.jsonl.gz $split_dir $num_per_split
touch $split_dir/.peoples_speech_dirty_split.done
fi
if [ ! -e $split_dir/.peoples_speech_dirty_sa_split.done ]; then
lhotse split-lazy ./data/fbank/peoples_speech_cuts_dirty_sa_raw.jsonl.gz $split_dir $num_per_split
touch $split_dir/.peoples_speech_dirty_sa_split.done
fi
if [ ! -e $split_dir/.peoples_speech_clean_split.done ]; then
lhotse split-lazy ./data/fbank/peoples_speech_cuts_clean_raw.jsonl.gz $split_dir $num_per_split
touch $split_dir/.peoples_speech_clean_split.done
fi
if [ ! -e $split_dir/.peoples_speech_clean_sa_split.done ]; then
lhotse split-lazy ./data/fbank/peoples_speech_cuts_clean_sa_raw.jsonl.gz $split_dir $num_per_split
touch $split_dir/.peoples_speech_clean_sa_split.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Compute features for train subset of People's Speech"
if [ ! -e data/fbank/.peoples_speech_train.done ]; then
./local/compute_fbank_peoples_speech_splits.py \
--num-workers $nj \
--batch-duration 600 \
--start 0 \
--num-splits 2000
touch data/fbank/.peoples_speech_train.done
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
file=$(
find "data/fbank/peoples_speech_cuts_dirty_raw.jsonl.gz"
find "data/fbank/peoples_speech_cuts_dirty_sa_raw.jsonl.gz"
find "data/fbank/peoples_speech_cuts_clean_raw.jsonl.gz"
find "data/fbank/peoples_speech_cuts_clean_sa_raw.jsonl.gz"
)
gunzip -c ${file} | awk -F '"' '{print $30}' > $lang_dir/transcript_words.txt
# Ensure space only appears once
sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
sed -i 's/ +/ /g' $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/words.txt ]; then
cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \
| sort -u | sed '/^$/d' > $lang_dir/words.txt
(echo '!SIL'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
cat - $lang_dir/words.txt | sort | uniq | awk '
BEGIN {
print "<eps> 0";
}
{
if ($1 == "<s>") {
print "<s> is in the vocabulary!" | "cat 1>&2"
exit 1;
}
if ($1 == "</s>") {
print "</s> is in the vocabulary!" | "cat 1>&2"
exit 1;
}
printf("%s %d\n", $1, NR);
}
END {
printf("#0 %d\n", NR+1);
printf("<s> %d\n", NR+2);
printf("</s> %d\n", NR+3);
}' > $lang_dir/words || exit 1;
mv $lang_dir/words $lang_dir/words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
done
fi