-
Notifications
You must be signed in to change notification settings - Fork 7
/
Lab8.v
415 lines (350 loc) · 11.6 KB
/
Lab8.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
(** * 6.887 Formal Reasoning About Programs - Lab 8
* Using Hoare Logic *)
Require Import Frap.
(* Authors: Peng Wang ([email protected]), Adam Chlipala ([email protected]) *)
(** * Using Hoare Logic *)
(* In this lab, we will use the Hoare Logic introduced in class to verify some programs. *)
(* This following definitions are copied from class *)
Inductive exp :=
| Const (n : nat)
| Var (x : string)
| Read (e1 : exp)
| Plus (e1 e2 : exp)
| Minus (e1 e2 : exp)
| Mult (e1 e2 : exp).
Inductive bexp :=
| Equal (e1 e2 : exp)
| Less (e1 e2 : exp).
Definition heap := fmap nat nat.
Definition valuation := fmap var nat.
Definition assertion := heap -> valuation -> Prop.
Inductive cmd :=
| Skip
| Assign (x : var) (e : exp)
| Write (e1 e2 : exp)
| Seq (c1 c2 : cmd)
| If_ (be : bexp) (then_ else_ : cmd)
| While_ (inv : assertion) (be : bexp) (body : cmd)
| Assert (a : assertion).
Notation "m $! k" := (match m $? k with Some n => n | None => O end) (at level 30).
Fixpoint eval (e : exp) (h : heap) (v : valuation) : nat :=
match e with
| Const n => n
| Var x => v $! x
| Read e1 => h $! eval e1 h v
| Plus e1 e2 => eval e1 h v + eval e2 h v
| Minus e1 e2 => eval e1 h v - eval e2 h v
| Mult e1 e2 => eval e1 h v * eval e2 h v
end.
Fixpoint beval (b : bexp) (h : heap) (v : valuation) : bool :=
match b with
| Equal e1 e2 => if eval e1 h v ==n eval e2 h v then true else false
| Less e1 e2 => if eval e2 h v <=? eval e1 h v then false else true
end.
Inductive exec : heap -> valuation -> cmd -> heap -> valuation -> Prop :=
| ExSkip : forall h v,
exec h v Skip h v
| ExAssign : forall h v x e,
exec h v (Assign x e) h (v $+ (x, eval e h v))
| ExWrite : forall h v e1 e2,
exec h v (Write e1 e2) (h $+ (eval e1 h v, eval e2 h v)) v
| ExSeq : forall h1 v1 c1 h2 v2 c2 h3 v3,
exec h1 v1 c1 h2 v2
-> exec h2 v2 c2 h3 v3
-> exec h1 v1 (Seq c1 c2) h3 v3
| ExIfTrue : forall h1 v1 b c1 c2 h2 v2,
beval b h1 v1 = true
-> exec h1 v1 c1 h2 v2
-> exec h1 v1 (If_ b c1 c2) h2 v2
| ExIfFalse : forall h1 v1 b c1 c2 h2 v2,
beval b h1 v1 = false
-> exec h1 v1 c2 h2 v2
-> exec h1 v1 (If_ b c1 c2) h2 v2
| ExWhileFalse : forall I h v b c,
beval b h v = false
-> exec h v (While_ I b c) h v
| ExWhileTrue : forall I h1 v1 b c h2 v2 h3 v3,
beval b h1 v1 = true
-> exec h1 v1 c h2 v2
-> exec h2 v2 (While_ I b c) h3 v3
-> exec h1 v1 (While_ I b c) h3 v3
| ExAssert : forall h v (a : assertion),
a h v
-> exec h v (Assert a) h v.
Inductive hoare_triple : assertion -> cmd -> assertion -> Prop :=
| HtSkip : forall P, hoare_triple P Skip P
| HtAssign : forall (P : assertion) x e,
hoare_triple P (Assign x e) (fun h v => exists v', P h v' /\ v = v' $+ (x, eval e h v'))
| HtWrite : forall (P : assertion) (e1 e2 : exp),
hoare_triple P (Write e1 e2) (fun h v => exists h', P h' v /\ h = h' $+ (eval e1 h' v, eval e2 h' v))
| HtSeq : forall (P Q R : assertion) c1 c2,
hoare_triple P c1 Q
-> hoare_triple Q c2 R
-> hoare_triple P (Seq c1 c2) R
| HtIf : forall (P Q1 Q2 : assertion) b c1 c2,
hoare_triple (fun h v => P h v /\ beval b h v = true) c1 Q1
-> hoare_triple (fun h v => P h v /\ beval b h v = false) c2 Q2
-> hoare_triple P (If_ b c1 c2) (fun h v => Q1 h v \/ Q2 h v)
| HtWhile : forall (I P : assertion) b c,
(forall h v, P h v -> I h v)
-> hoare_triple (fun h v => I h v /\ beval b h v = true) c I
-> hoare_triple P (While_ I b c) (fun h v => I h v /\ beval b h v = false)
| HtAssert : forall P I : assertion,
(forall h v, P h v -> I h v)
-> hoare_triple P (Assert I) P
| HtConsequence : forall (P Q P' Q' : assertion) c,
hoare_triple P c Q
-> (forall h v, P' h v -> P h v)
-> (forall h v, Q h v -> Q' h v)
-> hoare_triple P' c Q'.
Coercion Const : nat >-> exp.
Coercion Var : string >-> exp.
Notation "*[ e ]" := (Read e) : cmd_scope.
Infix "+" := Plus : cmd_scope.
Infix "-" := Minus : cmd_scope.
Infix "*" := Mult : cmd_scope.
Infix "=" := Equal : cmd_scope.
Infix "<" := Less : cmd_scope.
Definition set (dst src : exp) : cmd :=
match dst with
| Read dst' => Write dst' src
| Var dst' => Assign dst' src
| _ => Assign "Bad LHS" 0
end.
Infix "<-" := set (no associativity, at level 70) : cmd_scope.
Infix ";;" := Seq (right associativity, at level 75) : cmd_scope.
Notation "'when' b 'then' then_ 'else' else_ 'done'" := (If_ b then_ else_) (at level 75, e at level 0).
Notation "{{ I }} 'while' b 'loop' body 'done'" := (While_ I b body) (at level 75).
Notation "'assert' {{ I }}" := (Assert I) (at level 75).
Delimit Scope cmd_scope with cmd.
Infix "+" := plus : reset_scope.
Infix "-" := minus : reset_scope.
Infix "*" := mult : reset_scope.
Infix "=" := eq : reset_scope.
Infix "<" := lt : reset_scope.
Delimit Scope reset_scope with reset.
Open Scope reset_scope.
Notation "h & v ~> e" := (fun h v => e%reset) (at level 85, v at level 0).
Notation "{{ P }} c {{ Q }}" := (hoare_triple P c%cmd Q) (at level 90, c at next level).
Lemma HtStrengthenPost : forall (P Q Q' : assertion) c,
hoare_triple P c Q
-> (forall h v, Q h v -> Q' h v)
-> hoare_triple P c Q'.
Proof.
simplify; eapply HtConsequence; eauto.
Qed.
Ltac ht1 := apply HtSkip || apply HtAssign || apply HtWrite || eapply HtSeq
|| eapply HtIf || eapply HtWhile || eapply HtAssert
|| eapply HtStrengthenPost.
Ltac t := cbv beta; propositional; subst;
repeat match goal with
| [ H : ex _ |- _ ] => invert H; propositional; subst
end;
simplify;
repeat match goal with
| [ _ : context[?a <=? ?b] |- _ ] => destruct (a <=? b); try discriminate
| [ H : ?E = ?E |- _ ] => clear H
end; simplify; propositional; auto; try equality; try linear_arithmetic.
Ltac ht := simplify; repeat ht1; t.
Inductive step : heap * valuation * cmd -> heap * valuation * cmd -> Prop :=
| StAssign : forall h v x e,
step (h, v, Assign x e) (h, v $+ (x, eval e h v), Skip)
| StWrite : forall h v e1 e2,
step (h, v, Write e1 e2) (h $+ (eval e1 h v, eval e2 h v), v, Skip)
| StStepSkip : forall h v c,
step (h, v, Seq Skip c) (h, v, c)
| StStepRec : forall h1 v1 c1 h2 v2 c1' c2,
step (h1, v1, c1) (h2, v2, c1')
-> step (h1, v1, Seq c1 c2) (h2, v2, Seq c1' c2)
| StIfTrue : forall h v b c1 c2,
beval b h v = true
-> step (h, v, If_ b c1 c2) (h, v, c1)
| StIfFalse : forall h v b c1 c2,
beval b h v = false
-> step (h, v, If_ b c1 c2) (h, v, c2)
| StWhileFalse : forall I h v b c,
beval b h v = false
-> step (h, v, While_ I b c) (h, v, Skip)
| StWhileTrue : forall I h v b c,
beval b h v = true
-> step (h, v, While_ I b c) (h, v, Seq c (While_ I b c))
| StAssert : forall h v (a : assertion),
a h v
-> step (h, v, Assert a) (h, v, Skip).
Hint Constructors step.
Definition trsys_of (st : heap * valuation * cmd) := {|
Initial := {st};
Step := step
|}.
Definition unstuck (st : heap * valuation * cmd) :=
snd st = Skip
\/ exists st', step st st'.
Lemma hoare_triple_unstuck : forall P c Q,
{{P}} c {{Q}}
-> forall h v, P h v
-> unstuck (h, v, c).
Proof.
induct 1; unfold unstuck; simplify; propositional; eauto.
apply IHhoare_triple1 in H1.
unfold unstuck in H1; simplify; first_order; subst; eauto.
cases x.
cases p.
eauto.
cases (beval b h v); eauto.
cases (beval b h v); eauto.
apply H0 in H2.
apply IHhoare_triple in H2.
unfold unstuck in H2; simplify; first_order.
Qed.
Lemma hoare_triple_Skip : forall P Q,
{{P}} Skip {{Q}}
-> forall h v, P h v -> Q h v.
Proof.
induct 1; auto.
Qed.
Lemma hoare_triple_step : forall P c Q,
{{P}} c {{Q}}
-> forall h v h' v' c',
step (h, v, c) (h', v', c')
-> P h v
-> {{h''&v'' ~> h'' = h' /\ v'' = v'}} c' {{Q}}.
Proof.
induct 1.
invert 1.
invert 1; ht; eauto.
invert 1; ht; eauto.
invert 1; simplify.
eapply HtConsequence; eauto.
propositional; subst.
eapply hoare_triple_Skip; eauto.
econstructor; eauto.
invert 1; simplify.
eapply HtConsequence; eauto; equality.
eapply HtConsequence; eauto; equality.
invert 1; simplify.
eapply HtConsequence with (P := h'' & v'' ~> h'' = h' /\ v'' = v').
apply HtSkip.
auto.
simplify; propositional; subst; eauto.
econstructor.
eapply HtConsequence; eauto.
simplify; propositional; subst; eauto.
econstructor; eauto.
invert 1; simplify.
eapply HtConsequence; eauto.
econstructor.
simplify; propositional; subst; eauto.
simplify.
eapply HtConsequence.
eapply IHhoare_triple; eauto.
simplify; propositional; subst; eauto.
auto.
Qed.
Theorem hoare_triple_invariant : forall P c Q h v,
{{P}} c {{Q}}
-> P h v
-> invariantFor (trsys_of (h, v, c)) unstuck.
Proof.
simplify.
apply invariant_weaken with (invariant1 := fun st => {{h&v ~> h = fst (fst st)
/\ v = snd (fst st)}}
snd st
{{_&_ ~> True}}).
apply invariant_induction; simplify.
propositional; subst; simplify.
eapply HtConsequence; eauto.
equality.
cases s.
cases s'.
cases p.
cases p0.
simplify.
eapply hoare_triple_step; eauto.
simplify; auto.
simplify.
cases s.
cases p.
simplify.
eapply hoare_triple_unstuck; eauto.
simplify; auto.
Qed.
(** * Challenge 1: Infinite loop *)
(* We mentioned this nonterminating program in class. Now your task is to prove
* that it won't get stuck during execution, possibly using the
* [hoare_triple_invariant] theorem. *)
Definition forever := (
"i" <- 1;;
"n" <- 1;;
{{h&v ~> v $! "i" > 0}}
while 0 < "i" loop
"i" <- "i" * 2;;
"n" <- "n" + "i";;
assert {{h&v ~> v $! "n" >= 1}}
done;;
assert {{_&_ ~> False}}
(* Note that this last assertion implies that the program never terminates! *)
)%cmd.
Theorem forever_invariant : invariantFor (trsys_of ($0, $0, forever)) unstuck.
Proof.
Admitted.
(* Some hint preparation for the following challenges *)
(* One simple lemma turns out to be helpful to guide [eauto] properly. *)
Lemma leq_f : forall A (m : fmap A nat) x y,
x = y
-> m $! x <= m $! y.
Proof.
ht.
Qed.
Hint Resolve leq_f.
Hint Extern 1 (@eq nat _ _) => linear_arithmetic.
Hint Extern 1 (_ < _) => linear_arithmetic.
Hint Extern 1 (_ <= _) => linear_arithmetic.
(* We also register [linear_arithmetic] as a step to try during proof search. *)
(** * Challenge 2: Max of array *)
(* Verify the following 'max of array' program. See the final postcondition for
* how we interpret a part of memory as an array. You can change loop-invariant
* annotations in the program to facilitate your verification. *)
Theorem maxOfArray_ok :
{{_&_ ~> True}}
"max" <- *["a"];;
"i" <- 0;;
{{h&v ~> True }}
while "i" < "n" loop
when "max" < *["a" + "i"] then
"max" <- *["a" + "i"]
else
Skip
done;;
"i" <- "i" + 1
done
{{h&v ~> forall i, i < v $! "n" -> h $! (v $! "a" + i) <= v $! "max"}}.
Proof.
Admitted.
(** * Challenge 3: Selection sort *)
(* Verify the following 'selection sort' program. Note that we only prove here
* that the final array is sorted, *not* that it's a permutation of the original
* array. *)
Theorem selectionSort_ok :
{{_&_ ~> True}}
"i" <- 0;;
{{h&v ~> True }}
while "i" < "n" loop
"j" <- "i"+1;;
"best" <- "i";;
{{h&v ~> True }}
while "j" < "n" loop
when *["a" + "j"] < *["a" + "best"] then
"best" <- "j"
else
Skip
done;;
"j" <- "j" + 1
done;;
"tmp" <- *["a" + "best"];;
*["a" + "best"] <- *["a" + "i"];;
*["a" + "i"] <- "tmp";;
"i" <- "i" + 1
done
{{h&v ~> forall i j, i < j < v $! "n" -> h $! (v $! "a" + i) <= h $! (v $! "a" + j)}}.
Proof.
Admitted.