-
Notifications
You must be signed in to change notification settings - Fork 1
/
README
64 lines (47 loc) · 1.83 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
piRNN Program(Python)
Kai Wang
01/13/2017
GENERAL INFORMATION
-----------------------------------------------------------------
- piRNN is a program that used for piRNA detection. The deep learning
library that we used is Keras that running on top of TensorFlow.
- The program can be downloaded at htps://github.com/wangk4/piRNN
After downloading and unziping, the following items should be
found in the folder:
- piRNN.py
- functions.py
- Ele_piRNN.h5
- Dro_piRNN.h5
- Rat_piRNN.h5
- Hum_piRNN.h5
- README
- test_input_data.fa
- Four species' (C. elegans, D. melanogaster, Rat, and Human) piRNAs
data were used for training four differnet models, respectively.
USAGE NOTES
-----------------------------------------------------------------
- The program can be easily executed in a terminal like:
python piRNN.py [-h] -s <species code> -i <input file in fasta format> -o <output file>
- The species code should be a number that from 1, 2, 3, or 4.
- 1 means C. elegans model.
- 2 means D. melanogaster model.
- 3 means Rat model.
- 4 means Human model.
- The input file should be small RNA data that in fasta format.
- The output file is also in fasta format.
- Use "-h" to show help information.
*please unzip the model files first.
RUN EXAMPLE DATA
-----------------------------------------------------------------
- The test_input_data.fa is used for testing the program. Users can
run the following command to test the program.
python piRNN.py -s 4 -i test_input_data.fa -o out.fa
- The result should be in out.fa
CONTACT INFORMATION
-----------------------------------------------------------------
Kai Wang,
Department of Biology, Miami University, Oxford, Ohio, USA
Email: [email protected]
Prof. Chun Liang,
Department of Biology, Miami University, Oxford, Ohio, USA
Email: [email protected]