Skip to content

Latest commit

 

History

History
298 lines (252 loc) · 6.39 KB

local_tutorial.md

File metadata and controls

298 lines (252 loc) · 6.39 KB

Local Tutorial

下载安装EasyRec

git clone https://github.com/alibaba/EasyRec.git
cd EasyRec
wget https://easyrec.oss-cn-beijing.aliyuncs.com/data/easyrec_data_20210818.tar.gz
bash scripts/gen_proto.sh # 根据proto文件生成 配置解析.py文件
python setup.py install

输入数据:

输入一般是csv格式的文件。

示例数据

1,10,1005,0,85f751fd,c4e18dd6,50e219e0,0e8e4642,b408d42a,09481d60,a99f214a,5deb445a, f4fffcd0,1,0,2098,32,5,238,0,56,0,5
  • Note: csv文件不需要有header!!!

启动命令:

配置文件:

dwd_avazu_ctr_deepmodel_local.config, 配置文件采用prototxt格式

GPU单机单卡:

CUDA_VISIBLE_DEVICES=0 python -m easy_rec.python.train_eval --pipeline_config_path dwd_avazu_ctr_deepmodel_local.config
  • --pipeline_config_path: 训练用的配置文件
  • --continue_train: 是否继续训

GPU PS训练

  • ps跑在CPU上
  • master跑在GPU:0上
  • worker跑在GPU:1上
  • Note: 本地只支持ps, master, worker模式,不支持ps, chief, worker, evaluator模式
wget https://easyrec.oss-cn-beijing.aliyuncs.com/scripts/train_2gpu.sh
sh train_2gpu.sh dwd_avazu_ctr_deepmodel_local.config

评估:

  • Note: 本示例仅仅展示流程,效果无参考价值。
CUDA_VISIBLE_DEVICES=0 python -m easy_rec.python.eval --pipeline_config_path dwd_avazu_ctr_deepmodel_local.config

导出:

CUDA_VISIBLE_DEVICES='' python -m easy_rec.python.export --pipeline_config_path dwd_avazu_ctr_deepmodel_local.config --export_dir dwd_avazu_ctr_export

CPU训练/评估/导出

不指定CUDA_VISIBLE_DEVICES即可,例如:

 python -m easy_rec.python.train_eval --pipeline_config_path dwd_avazu_ctr_deepmodel_local.config

配置文件:

输入输出

# 训练文件和测试文件
train_input_path: "dwd_avazu_ctr_deepmodel_train.csv"
eval_input_path: "dwd_avazu_ctr_deepmodel_test.csv"
# 模型保存路径
model_dir: "experiments/easy_rec/"

数据相关

数据配置具体见:数据

# 数据相关的描述
data_config {
  # 字段之间的分隔符
  separator: ","
  # 和csv或者odps table里面字段一一对应
  input_fields: {
    input_name: "label"
    input_type: FLOAT
    default_val:""
  }
  ...
  input_fields: {
    input_name: "site_id"
    input_type: STRING
    default_val:""
  }
  input_fields: {
    input_name: "site_domain"
    input_type: STRING
    default_val:""
  }
}

特征相关

特征配置具体见:特征

feature_config: {
  features: {
    input_names: "hour"
    # 特征类型
    feature_type: IdFeature
    # embedding向量的dimension
    embedding_dim: 16
    # hash_bucket大小,通过tf.strings.to_hash_bucket将hour字符串映射到0-49的Id
    hash_bucket_size: 50
  }
  features: {
    input_names: "c1"
    feature_type: IdFeature
    embedding_dim: 16
    hash_bucket_size: 10
  }
  ...
  features: {
    input_names: "site_category"
    feature_type: IdFeature
    embedding_dim: 16
    hash_bucket_size: 100
  }
  features: {
    input_names: "app_id"
    feature_type: IdFeature
    embedding_dim: 32
    hash_bucket_size: 10000
  }
  ...
  features: {
    input_names: "c15"
    feature_type: IdFeature
    embedding_dim: 16
    hash_bucket_size: 500
  }
  features: {
    input_names: "c16"
    feature_type: IdFeature
    embedding_dim: 16
    hash_bucket_size: 500
  }
  ...
  features: {
    input_names: "c20"
    feature_type: IdFeature
    embedding_dim: 16
    hash_bucket_size: 500
  }
  features: {
    input_names: "c21"
    feature_type: IdFeature
    embedding_dim: 16
    hash_bucket_size: 500
  }
}

训练相关

训练配置具体见:训练

# 训练相关的参数
train_config {
  # 每200轮打印一行log
  log_step_count_steps: 200
  # 优化器相关的参数
  optimizer_config: {
    adam_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.0001
          decay_steps: 100000
          decay_factor: 0.5
          min_learning_rate: 0.0000001
        }
      }
    }
    use_moving_average: false
  }
  # 使用SyncReplicasOptimizer进行分布式训练(同步模式)
  sync_replicas: true
  # num_steps = total_sample_num * num_epochs / batch_size / num_workers
  num_steps:1000
}

评估相关

评估配置具体见:评估

eval_config {
  # 仅仅评估1000个样本,这里是为了示例速度考虑,实际使用时需要删除
  num_examples: 1000
  metrics_set: {
    # metric为auc
    auc {}
  }
}

模型相关

model_config:{
  model_class: "MultiTower"
  feature_groups: {
    group_name: "item"
    feature_names: "c1"
    feature_names: "banner_pos"
    feature_names: "site_id"
    feature_names: "site_domain"
    feature_names: "site_category"
    feature_names: "app_id"
    feature_names: "app_domain"
    feature_names: "app_category"
    wide_deep:DEEP
  }
  feature_groups: {
    group_name: "user"
    feature_names: "device_id"
    feature_names: "device_ip"
    feature_names: "device_model"
    feature_names: "device_type"
    feature_names: "device_conn_type"
    wide_deep:DEEP
  }
  feature_groups: {
    group_name: "user_item"
    feature_names: "hour"
    feature_names: "c14"
    feature_names: "c15"
    feature_names: "c16"
    feature_names: "c17"
    feature_names: "c18"
    feature_names: "c19"
    feature_names: "c20"
    feature_names: "c21"
    wide_deep:DEEP
  }

  multi_tower {
    towers {
      input: "item"
      dnn {
        hidden_units: [384, 320, 256, 192, 128]
      }
    }
    towers {
      input: "user"
      dnn {
        hidden_units: [384, 320, 256, 192, 128]
      }
    }
    towers {
      input: "user_item"
      dnn {
        hidden_units: [384, 320, 256, 192, 128]
      }
    }
    final_dnn {
      hidden_units: [256, 192, 128, 64]
    }
    l2_regularization: 0.0
  }
  embedding_regularization: 0.0
}

参考手册

EasyRecConfig参考手册