diff --git a/.github/workflows/static.yml b/.github/workflows/static.yml index 3f58fcc..2f5be40 100644 --- a/.github/workflows/static.yml +++ b/.github/workflows/static.yml @@ -41,15 +41,3 @@ jobs: - name: Deploy Docs to GitHub Pages id: deployment uses: actions/deploy-pages@v4 - - test: - name: Run Unit Test - runs-on: ubuntu-latest - steps: - - uses: actions/checkout@v2 # checkout the repo - - name: Download dependencies # execute tests in tests/ - run: | - npm install - - name: Execute tests # execute tests in tests/ - run: | - npm run test \ No newline at end of file diff --git a/docs/assets/highlight.css b/docs/assets/highlight.css index 3d1f58d..575cc0b 100644 --- a/docs/assets/highlight.css +++ b/docs/assets/highlight.css @@ -3,20 +3,20 @@ --dark-hl-0: #569CD6; --light-hl-1: #000000; --dark-hl-1: #D4D4D4; - --light-hl-2: #001080; - --dark-hl-2: #9CDCFE; - --light-hl-3: #795E26; - --dark-hl-3: #DCDCAA; - --light-hl-4: #A31515; - --dark-hl-4: #CE9178; - --light-hl-5: #008000; - --dark-hl-5: #6A9955; - --light-hl-6: #0070C1; - --dark-hl-6: #4FC1FF; - --light-hl-7: #EE0000; - --dark-hl-7: #D7BA7D; - --light-hl-8: #AF00DB; - --dark-hl-8: #C586C0; + --light-hl-2: #0070C1; + --dark-hl-2: #4FC1FF; + --light-hl-3: #AF00DB; + --dark-hl-3: #C586C0; + --light-hl-4: #795E26; + --dark-hl-4: #DCDCAA; + --light-hl-5: #A31515; + --dark-hl-5: #CE9178; + --light-hl-6: #001080; + --dark-hl-6: #9CDCFE; + --light-hl-7: #008000; + --dark-hl-7: #6A9955; + --light-hl-8: #EE0000; + --dark-hl-8: #D7BA7D; --light-hl-9: #098658; --dark-hl-9: #B5CEA8; --light-code-background: #FFFFFF; diff --git a/docs/assets/navigation.js b/docs/assets/navigation.js index 196a71a..b2a97a7 100644 --- a/docs/assets/navigation.js +++ b/docs/assets/navigation.js @@ -1 +1 @@ -window.navigationData = "data:application/octet-stream;base64,H4sIAAAAAAAACpWWUW/aMBCA/0qVZ7Rq1TRNvFEKLVphjLhDU9UH41yDhePLHKcFTfvvk1NGE7DP7DX3+XN8Pp/9+DuxsLVJPxltreHCJr1ErKXKDOik/3iICtQvYOz8Zszwjk3vk15ScrtO+slzrYWVqKvLY+bD2hYq6SUbqbOk//nTn96x7ifWtl4BQ+Y+h5UdjtDCYQ0npn0oPngoLRACFz5DgtqCtqFMnVL/pbw6z3kVl475ixSoCd+eIFSVMLyEh4V3pYfgieCppbgFDYY3efcVX74P33Od1zyHKWagFlCqnW/KME3+g8vYxYOVSloJFX0MHJuWICRXwzU3FVG6x2j8ULgRDK95JUXkpB2RcfWUm02Gr5rh3RsaMndBUlzuHMJwqGS5Qm4yv/YEIzdjoi2YZy5CFQHFCrJ9V5grvgPjLeETipx0yq1YByYsXOz7wyAdLHwztcJEsl5B5usFKHjhWgADU4wN/KpBC28hE3hsklQWUnEj7e5658qOC+tPUZgmUzWD2nB1MYPQfWHRNLncTygUryqoLpvPXfPHqy8ddQrcBLehaoIpW4wGU2+7acWpltVgS1iFHUtYxQVyI0vIJCc0/xAyne8bQPedkSvoTOq8Yng3S5fECT5G482hPeJhOpifKXdoXO4uboaHcYT7iCTvsBLb/zLRGWz9V5kHJMQ52IFS77z/lukytO7ANZdRwNeFCKEs3Hp+gLBomrWMDRapNYHEEni0xFujwkXegs7ufkPUAsr9Xw3mk3gDPB5BniiGpRSRW/yt0hhuQFM3eBuLv6jS0egr+zafDIk31YGJ65p1uNZ/a7Auq/ubAeE9han9LZW0KbjXogDv+rtETOXSlELBtZUi+Cjyk5TaQrFEkzFcIHof9l2CUtV5DpWdwdY6fohFqaBxeLVB2lN3T38BdUwos0cNAAA=" \ No newline at end of file +window.navigationData = "data:application/octet-stream;base64,H4sIAAAAAAAACpWWUW/aMBCA/0qV52rV0FZNvKUUWjRoGTGrpqoPxrkmFo6d2U4LmvbfJwcKCdgX9sp9fL47n2M//4ksrG3Uj4Zrqymz0WXEci5SDTLqP++jsI0OuIXoMiqpzaN+9FpJZrmS5qoR/pTbQkSX0YrLNOpff/l7eSwZ0TfOlEQ8O6JbNVDSgrT3ZDrB0jpQ/6XsnefsIVKm5BtoO7sdERXK8phBdIZpWsJi7vXsg91FIoV1F/NLVbZaAlHE/RwuqMWdaF8a4juQoGk9Wr7hy3bhCZVZRTOYqhTEHEqx8a0eptEcXOcvFpYLbjmYQCa7yhxL1A01nHVs6hHZ3dwptfmEElgTNS5o5j1tAbRb7lJISmCcikFOtelIvImek7lepepdEnW/RcN5N0FUXG4cQtRA8HKpqE792hMM3emxtKBfKQuNGxRLSHfDOxN0A9p7XE4odNEptSwPLPgOPMsTXnBBNbebm43rOGXWv3CYRlpZuOV/LOIknvucjTAiqVeeg4A3KhkQ0MVIw+8KJPMeRARHW/UAlabi4gFCl5FVuu7lbkUmqDFgruqf2+bPvW8t9aPN66b6rLG2nInGgeMfc2KudrG2vPf1uiVPgOrgHps6mJD5MJ56P96NOHYB1NgTLMOOJ1h2C/iKl5Byimg+EHSvDnOIfzGH7rSkXGaGqMU0niGfh2P07IEcKMmgtD+BWaXj2bh7Jo//0f2Rc1cZUfsUkTKOSESdwaHm+rLy32pHECKkabpnt7UZosYyhbXPHKY7x2iLB80nEN6EWIjD3gd60GLQd06pmqMUzNELImJeOL5R00irIrE6MAwIjp4rokrOQq8QUwpuE3APUAbeTrUJbB+rLANjH2Btn5ROB6ooBdQOrzZIY0u4XNxpSKCg0nIWfHr4yXMPJVEr8KftwbB8LRSuOqLmSnnft22i+7WdDIffyeNsPECe3XumW1fPhrtO77SqSjO5jRHvKeyZu5d/ONS5QQcOAAA=" \ No newline at end of file diff --git a/docs/assets/search.js b/docs/assets/search.js index 624182b..96302e30 100644 --- a/docs/assets/search.js +++ b/docs/assets/search.js @@ -1 +1 @@ -window.searchData = "data:application/octet-stream;base64,H4sIAAAAAAAACrS9C5PjyHEw+F/a8Vnj7/ixUU+gVtI6ZNk+O07y6bTrc1zsKubQJLobOyTABcGeGSn83y8y6wFWAVkgZ28ipO0aAMysR1ZWvutvD0P/8fzwzQ9/e/jQdvuHb7TcPHT1sXn45uGl6ZqhHps/1N3LpX5p/tjvm8Ofm9Ph88Pm4TIcHr55eL50u7Htu/Mj/fH2dTweHjYPu0N9Pjfnh28eHv57s4Bu13dvzTD+sR4+7PuP3ff9v9nfpZgWv7sVSXs89cP4fze7sR/+vds3n/516I/fjUPbvSygynx956j+7fs//uG7U7Nr68PvX+vhTI8r/fJORH/653/9vgcYNIbwya2gm0/jUO/GBYjuzZ2A/rV+a3d9R8NzH9wM9vjU7P+f/jJenpo/HerPzbAEevbRreDPY3P8r37Yf9//ue+XZiH+4PYFO30G0v2+//2hPT319bBfXLPZV3fO9u/bsaGnGt7eC7DvxqYbCSKbf/Tl4PlN8PkX7MXv+3+qz+0uv1GSD28fB3CNfwF627fdyxk5x+JIFr67cyzTr7/v/+0/vvsvejDpl78A0X/+8Xd/ug0RfHknou+bT+P3fQBC40k+/CI03/cfmi7DjK+/uhOBYzXf9wCDxhB9dudO+e5f/uX/+P7//NO//57eJuGTW0G/NOPvDodpDReP+viTO0CHH6F4sAw7/uZW4Md63L3+X//5u+9+9+cFsFdvb+b6u6E+Nf/55yX+EN7dDKyph93rd9//+V9+98cleFev7wP5X80TCe+/mqc7gbUf2lOzb2sapP/iPsBXEhQJ+uqbm4GfDu34XQMHwa5ZotT4g7vAwnb8rjnW3djuKIlt+cMsGsargGfsh91rAOs+f8SneRgFnzr7fdOd+yED5e/sF/+LxeA2D6d6aLox9IOA/6d6qI/N2GRRXH/0BTjq/T4H3b6+Da5WSugA+P378fOpWYG9tV/9L55HsoVuEAPompccEvv66wyga17CAPTKCKAfxAiOl0MOi339dUZwvBzCCOTKCKAfxAj27VsOi339dUawb9/8CKqVAUA3qCWox7VV8F98pYVA8GEtirW1sL0hRtN8OuVw2ddfZxzNp5MfBFsbBPSDGMGhz25q+/rrjODQh03N1jY19IMYwfnnYcyhce+/zhgAuB+EXNvX2BNiFKf+Yw6Pff11xnDqP/ohiLXjAfpB7eym7rIbz77/Sru6qbuwp9cGgT0h+dP5Q7N//9weVpjU9Wdfi1MFHGGfrHHe634RI3yrh7budlnUV998nbF5BH5gam3NQo8o6SrLA+qvxwHqaf+viVbk5h+a82udRzN98nWG4eCHsawdKb4/xIje3zCk9197TO/jQa2M6P3KkMah7s6n/pxFef3R1xlUwBCWao0nTH2iRraqXYUvvtKYEHwY0Jow4HpDbaa627ddlh1Mn3ylzWThh1N1bUC+P5kRZY9W/8HXG004XMUatdm+ZEayhuqrjiMMY41ZY09ITtBmhQP3/mvt/zaIA2qNS2NPiFH03ZU1aQGRe/91RgHAg7xmVkaBPSFG8ddm6LPD8B98nXEg9LAca0Rl+0KM5Gno6/2uPmc51/VHX2dEAYMf1RrzmrpEKWj1W16Hsu+/koJWv00n5ZqQiT0hFeU6y7rc+6+lKteBdbE1KsOeUDa87DnSfb1DpJvUs7UTpCOPjz/2+8vhZjTb8HkemxcPCaR/aLumzkpHEdLw+S9C+sfLYWz/ran33zWH59+N4ARu+5W1ux459fNf1Kl/vRwOn3/fd12zG5vsZog6M/vZL+rEPx363YebcfuvfxHKuZt2De31L34R6j/15xaWrj7c34nl3/6i7vy5+cN/3ozfffyLEH7XP4/H+tPNOKfvfxHafx76U3/JnsQR2un7X8ZqIGDnP/rheDu3ufrFL0L9+6E/n/+lG4f+9PkP/TkrUkU9WPjhL+pIfxrb7Pj9B19JMAXoQUtYcSdubV+IkfxuX68PZEK1dd+v4luZwJdm/G7N9HL1zdeZRo8gCC1rolfo0bKz+vLy0pzH/2g+jRCC9vv+eDo06J5ecliTH9/qG//YtC+v37XH9lAP7fj5nz6Dy7vejYshd/THd6H7c3No3sDC+fu+2zUnF4/5uz/9O4WS/MGXof2+GY7/OjQ/X5putxT6mvn6zoCe7/tTuwMA//vQX07nP/zz7+jInvm3S8j+snloMezim789vDXDGWSdbx74VmxBtXxum8Meon9tPzYPu/54bND8s+93F2z+xX1mJxE+tl8/Fg+bH4qNFNtCsr/8ZfOD/zG+YBu+rQTf8E2xNazciA3bGqE2Ev4ty43asK0Q1Ua770r3t9qwbVnojXHfs2JTbKtKbRjzT7hvAEwO/5S+ofwrD5aVG7ZlhdowAKyU3DCAXOgNLzZ8y6XccOZ+zQGwUGzDxabYlhXfcABcMLPhynWLa/i41Bte+le+x9x3WRTuifBdho7YJwKRm42Q/pVyAIX2TwByqdlGVBux5UxuhHENWWwE/lwy/4S7YUnhOi/9ZEgFo1BmIz1kWfpXlX/i+6wK3/B9Vjgb2myU2PAtY2ajpJ05pdzkKu2GpcpNsVVcbZQHrDxg7QFrTxGa48ypjfY0of1kaD/N2k+zLv2ralNstak22rhvysINvWTu49JTRgmQpWSbUvqGp4xS+195yKXvc+khV77PlZ+MykOufJ8r6ea78n2u/DRXHnLlIVd+NoyHbJinc+5W0gjfkL7h+2w8ZOMhGw/ZGE/WRRFaALsAyijCVilwRsoNK6TfT4XvOCt0+KwMz6rQAhRMwQ70vWfTZpx2IxOhJf1vpw3JtCUexsrwqAqtsNt5QMH9DDHOQ0s4IBzZCFPIdjynQr6DT5A9MeBCXC0xKHjFOex/jrudb0XhtrQu3S5Vld8Dyu2BwpRA6XxbaGapWBUSp5ZvGVARlxu+1bAkXG/klsNeskBhRngFeIB8uYGtAEsiCtcJJmB7KJhlYJrurQgtuZHbEnDCpnUtvRFbBiQqyo3YVsCjkGXYZ8bDk4XHK5mHJwMO5BsVLAoyDgmrLWGDw2aSAYUsQwtRyA2TZqNwlpgqPDTF/GeKh5YILRm+U+FZQKECChVGoYxv6cK24hVn0YpzWHHNllYcXiGllmYDo+NlaZe54naVlWa4OfhWwa6R2Gng/5pvFO4cLTZqy4BXaViNSkKvAJYGVqJhxYURG6ZxNYCkdRVaxgEpi43cFqWMh8GjYQgYRrk4DHxljxe2QQpWxg2Ei8qOpIAeA5nCvkYyZcD9cGwSlhtPNTgYLHFWwK+QOGEcEqkZaAnpQUOnFXIkoPASUBr4QSnCM+lpuIRVBbqBPWQbpW9UvmFcoyo8gIqFFvcvhW9I3/CwKw+7Kt3wWeWBVx64KXwjwDYcNg4wOOOBGw/ceOBG+/EZ33OD2xYOd2PcS1448Lzw4HnBbSteWBEtrAQiLMTSwkpHn7C9cIHhfIEBclNaDqWFhiOdbRWQMEofxh2mHE5A5PoViBwo/HBgTbjSBuhZYEeFJ9lSyw0v7HaEzgNTMSDVgIyyVcAA7FHAYbTVRm6VgGfGv2WF/y1j4RkPLQFUDt1m0uHlTIW3AQfIhe5tFX5h/DNuZ1lskLhwHNyeBSCa4VlgWwEHcHsLBRmwbZWh5XDESySjJVJ4MpiNKLaFrKIlUn6JqnKDh3+h7FIZ4GiwVgJmEE8K2PkokNlDpEB5DhdNVAYWrdhWkoNQAyut3eoJEMfs6vnTRHJ3NDDHbhxeFH5MpZEE+RYXBzpVgZhVKP8IZlrr0q8mfl85aLCa9jNLcPBL5oEx6b9iHhh2TNhV8++Mb1khGkBwO0fMrZBtGY8ADzwAIjwmPO4QBh53WsMcAnYDw4Av3FsUNlW14aL0P63CD4xvSY8ADzv7KGCQAYPErQ//xsPOPtPhuzI8CyhkQKE8ChVQ4GmHE42SAr4MM6j8DOJZJ6A7KiBQAQGKzBI2JcrMyvANTqh9ixsdp1B7DLCHbSNMknZDiElcRSSugY51ucSFdCBx6biQcYcKPEH6Vbq0TKfiAuiX20OP4wTAF5bnwCd4gFSicgKFsKxEbAUsOQhe2xIkISQY+MwSDLZQ3ingUMIzFABzPEPLcsNL1ILMBtie2MKBz0tg7iCR8FKElgwtZHkCJDztoZVleBv6VBr/DA8nfFahzARMGA8nQFsFFJV046qUfRTPu47mvYTJhdOr3BrBo3kv3bxLXqFiLEFuBgoFYVBaVVnahcBP8GBgfooVSMT4lQF2UQJ5Kug7bnqpjNuoJew5hSc4nHNK+2ea4zAkjts9q7T/Ds9Z+6zaqG0B8i4etHLD8ZyFv8z95e4vTBHIktxID9soD9EEzKYMbyv3SwtZFIX7y9yvRMHdE+H+SvdXub/a/S3d38r9dRCZg8iY+8vdaARzEJmDyBxEPKgSUa2M1rR62Pwg2OJeqtyalqXeoIQEWj+SSeGWEt7gnjJFZY8CXdo15dtCCSdZlfCmsgelduIIHIUCj0yQCgQzvsWL0GKwg4DcOA/PRGjJ0FKhpUOrDL+t3BEMApB7KwIOwUIr4BAORzxrVTRrBmYNtvh81oybNQ3cEM84Vtkz1cDZJNH+we3havyesB8L9zXDgxBb+D2qrhzVDG7Fc741IPki98IWkq8GsrTMCDaYZUaglIA5Y1uBdCP0Rm81sB1RhmewKQCyEMa3ZOHfShaeIYsyifRhYpUVNFghFyVEfIeCQ6VR/lBuGpQqrQGmksKyZlk6egIWYa0BwApQka+Ulwul9hqAAqMIKoIlGEzwzCtAEMWDBXk0cz+wE4SCDk6QbaHIhucw0AYcBhy1JQV8B7Ul+wzFbOTl2rdKq+Zzx6UBLZrXtiXyVRR94AzAAxs0GiFVaOnQwj0PygJ2Hn4LwpTtlVCF/04hxQLHRz6I31n9FN8GHPbIBr6gdPhFGd5W4ZnxUDRwTgmKhA44dMCBZ7ZtBRw6jAOtXTD1AonTQql877Xx35VhHPbkwxa3rUQvTkwhoCeLcpmumKMrU3G0zqJ+sSm20jjLagl6IR45sNusNYhv7PLD+QmGOaDwwpmdkColTCa+kpU1RYKBQsKT0m1bVaFN0X5iNZrSGVZ0xcEGCFZYa/kDwQ9NbtBLoOliC91DmZRZy5CF44ww0AdrogULItpf0SJmDbDYMgBDOcIHMRo4L5gxJZ6mxVaD2mxFboPMuLBWKLTvSW2VPguNW7Ma13joFlsFUrY1Uikn/uIPBHePRPgeJVyQdIS1GSkUcB1YZdzkwj6xA+SoZQNn5jghqAAYDw6o3rVw/mAMlqqAleNU4ks8WiowLKNlVMOBjqbRCrZDWTo7iADV1n1n/DM0j6KKXnlLo7DCkYBnIjyTbtgCbaQIudIeXlXaqRBV5RtuRYQJCNBMqmAXGB6eidCSoaU8UrSV2mdlaKHKAyc9mkvhmSyK0GKWJmXBwyPh+ivxLIHZkQXScMU2Es2lgEwWZfhFFVrGv2UBBZpLER7jbvySifCdDG9RkAezPtPhtwEH88OQLOBAHRlIVlqBGpgtd0QmuZ8paR0Z+AO/FJIHFLwMb8MweJipsK+lYA5w2E9SBBQioBB+80jhKUqKMArQB9x3nlSlLPzcShZa3C092qzsb2XAYZ0b1UbKMArLW+BRGIQM86TCINDBgW9VGIUKGJQMLRVaAYUKo1BhFCpMlA7rrQMOHWhKBxw6jEIHHDrQlHb7QuowDB1QlA5Fwu1jMyg4lH+QywZExh23L0FEB06lJXL7SjlrhpLSes0MEAPyH+FcYtBfZGq6KJ0DrHLsHjWC0n2MiwPTa5eEsw2etoXSjt8LZwxhXpmEo9Hye2Usw4e9UArsmOP8SGGFFRcEynvF1gBnLrCTwJVx11Sw6kj6CoQVPA+sNcyTOVg7LWDm7BEazeTumaU38CHZA4Gh3RMOHIXHgBM4rZtHejUL9EHrrAQVnuNWKZln+TzwfHgr8Ohn1qohtiUIVjgz+B2KRNB3jrwZxBJQzNxbnAvonWP6oAaheAYuNYG0DwZVJH2YMpBM7E9F8LxZiQNtuPZsEBwPB/cLexAwdw7AyAT6xvCnVcBVBXBV6Inl6jywdW75OhiSjWfnoEoUfrSOr4JIZfkqU56HQstySWzJ0Aq/YOE79BshZDvzAJnz0Aq/teyPeZ4Hjyx/w1b4qQg/sOwKW8YN0jEp6IBlUoBW+qVyfAj8rjJ0TwUoOkDWYbjaT5q00hxjG1mGgSPFMdxNKrR0aE2/rZzeKEsvo0nU5w0cbihJ41tcNvtWhFboVaX8KKuAAy0A9rd+UWUVcNjTGlsstAIOIxwJSRPGYcI4TMBhT2tshXEYj0MVRWix0OKhJUJLhpZyI0LriHtWhlblVksVAQcLOFjAwQIOJtzIVSBExVR4G3CwgINV4RcBB/cMQvGAg/ttpJDJ2rdhHDzg4Dp859dc8So8CzhEGIcIOEQYhwhzJRyO5CyJfVEMPBhg+186S4RT1sGaiDo6Q7M3SOTGmq3Awor274o7EZ97pxQIWZVCJ2XpJXrvTcWzz7JwoDNU41GwRDUeLDvAzEEh8T7UAr2faE0SzuXJvDoP1jmrrdqWtF9h7MdWgxFXguhdgUEMDajw0gYMgAaIVmbopJDMtWTpMEm0AOIjHAt0A6LBwETDNgo7ZFseiEJTNX6HvcS3CNi20Ieiy41CW7V9JkNLhZYOUAIOWYWW8S20VSNeFXBYEyC2Ag4VcFjVV2yUCsNQAYUKw0DNFz7TYRQ6YNABg3YYEiKL/WIQtv8DCCJLRCaD5xYdtwr9PGjM0ZbYIMDP2tMwggEtFfBvdG+hGQOduchRtUC7rvI+XI6OW2HdiOi4BbDWcQstjlFCRglnsIaYBWlnXMHY1UZviwrGqUMLjGfAjJWuQsv4FqrwCgMJQIXHSCg0XsvUdchixxQDI74iVHiFAVcwRrnBnQ4cGi1kaE7W6BpAb6lxfinm7MpAPsr/xOngzqkolbXvF7DdChtjU+EUgqlb4xQKtEZxNE+iC5wz11LWdQ+tUrquKTTxGAHPNI4ePNVlaFWhZXwLDfH4WzzAYACq4s4WodBNbL+ToaVCK+CoAo4q4KgCDjRi2xZY63D3oSEbxqbQW2xbAYcJOIzDkaxd7HGBEg4/wKIvrV3wuRgriBvvAQYeiAcCHEcGjQ9mY+UcA74398pKOUDsKFrD5GgUT6QV0b2VECRN5V6gNga+LWlVIEsL4PNG4QXA2h3FgGG5Hynp+oDGRs3Mxqo50gfDlMLK8PCxVV5s/JWGzVVYBcxREgbEFMEWU8jQQhslt15si84eBFxWToJnKK1zhxoMNKBRSNzJ4D7yJhhl3XwWnPWucfStFdsSxOcS5WJwolXMTaE1hsB8COtpZU6cgyFZHRJwytJPG0pp+KgKLyurGqKQ4WYOj31AoKzVCVpWrAP7MApLSHto2rCtCikRAunQ7qLlRheF240anSKwG3XBwzPfFY2Mz77F4EIDUXg6tMrwFvZCAY+Mf4mEZ1uwkTEUD1gFOmM1Ex4ZekrwkfKNgMBKQNARDPCyLfTBQDwfDxh4GAQPg7BLjW9laIVB4OkPyCxh46MqtIwHJwIKYe1TG43yj30UMIiAQQQMIoxCBBSoAQANa2H8eKSnHWCt7q0MOGTAIcNSoE5sfxFwyDBTeHTb78JaqDAMNFnYVpgpFZbbKo4AWYVxqIBDhXGoMA4VcOiAQwccOoxDh3HoMFc64NABhw44dFgOHXCgPxLHVgYcZcBRBhxlwFH6La3LgKMMOMqAoww4KjeOhA3HDlgGvjtdLdtFJhessOwXdH7UPmE/MauTVDZYGHcY7gWmbIwwevfxVKrsSQtzLCznBGOa+7X1sYA1UTp3lHXbqtI7d4WLEgEWakNdSmsPMdwFuoIxspTOa8gsT1D+hEbR2CpBGGyFfiLhTBTM8UN4gCQgrLEBfMnOJABWKsv7sIUkDXgUkj70XFW+E/YcBjes5VEV08g2bH80424+0Hxkn+FWQm+nHTe2Sv8dSqO25cenMRSwhGDhiju8ugrfVSDEgaSsrSahIaRGh1YZWn754Pfut6YILRZa3P8C1Vbbkv63JuAwAYcJOFBttS3jflEWHgeG67lnwE7BUl4WHkdp4w6xpUJLh1YZWlVoGd/CSCzbYraVbILYYw1lcn4ogacvbALvswZvmw0zBNaMwoi0JkADqoX1wwhL4BCCJawo6egaHU3I7rgLrgR4lhGVxml/lXPsVLK0kdwQhmgtX8ACrbzpRYMSW2iFsH5MiNwvUTKAYCvv62Hosao8DAySBjuold0h/ssqhGigE65hmSFoasgMwQvALY1LjPng1rCF+k5hHX22s8IG21hzOL6TlZW23XaBBgIA8lU26BLp2LruLC2CuI2kWMDwhetBaX0COCUYN1dUmxKdXfhZ6RsYfyPNpsQAD2yhxmJbeIRruSlt1JzalFanxpfSP1Lhex1aHoFNboCvAnyBoTGs2pR2X5ebEsdvX4rQkqGl/Ge+/1ZPx3eVfxTgy0AMqBXbZ26CMWDLNgJ4GfovQ/9lQGDtoQgtYFBhhvBgxbcqDEGFIaiAQ/khqIBCORTJZosDHRi490tk/PPN5kMdwAaMVkngB8LOtw1rMM5UAqZZPFlhmzMr/DlLCSy8NXGj5xwJ3ba4D57gIoRRoLLCrLFZoEIK/kaFscMSk0sgcBLsS/atRl87PNOoujG+KVGvg4DxUoOzH4JASnR52xYPLRFaMrRUaOnQgkgKI+WmRH3ZPjO2lUxuHCwB9Ql/KMvFDCReeE4GbhA86rjlaNIf60DSKKpihBqI5WjMQT8y0ACatIEsSvR8uKwAkFeQ2xXwpHS/QnFQo0EYNQ93roN9WpbuiWWEVp0CxRXFNmnD6optVboDH3QD1KLgG8shba5LsS1hZuxfNDuB2coY+8AnfQiX4VEGxwjaCFE6hyVhaLsuQXLCvqJJHlWoElpV4d8iCwRzuXVtg1TvpAi0oSEUcAeh+glQOE4dtoTvP8SYYfesTwNNb2VlHwmcWMAlUCnCFs4WHvpK+ZYW/q2dl0I5XwWEU1bhpWF+DdAsy1GL024Q1ngPg5BXa8X8d3haqeBEVME7aIAS0flTMmf9LpkzHwMFWCMvPLK+Vm7QhGcf+UVTpR+LCvOrUOdEOqi4G5UuPEqruEBMHIhM9rda+gHC/10LIYMT1h4rAgUl1yVt/FJr9BQB+VgrtlbuWIG1LJmfpJJ72iytLQHEFe5xAeO34ErBQkuFlvYt6WlVcg+4DD8obQQTpF+J0JKhhecn8BYbAgRSTQn8oYAuW8G/gO9QAhByU9pULW02JdqH7LOAA+1DYNcr0cGBkG2+loG3OnxXhrdVeGb8M1O4xSgN829NwGHCOEwYh1GhFXCggwNnwwQcxhN+VRSh5XFUBQ/PRHgmQ0uFlnY9rdDwYZ9V4bfGP3OplNAKOBgPrYCDBRws4GA6tAIOVoWWn6uKu8WvuF/yCk8i+1K4Kah4QMEDCh5Q8ICCBxQ8DEOEYQjmIYswDBGGIQIOEXCIgEMEHCLgEAGHDDikJ6tKBhwy4JABhww4pN8JlSxDK+CQAQeKIQgZTfMSWwGH8oytUgGHCjhUwKHCOFTAoQIOHcahw5LrgCNw1koHHDrg0GGutN8elQ5kpQOOMuAI27wK27wK27wK27wqA44y4CjDOMowjjLgqAKOKowjbPOqCjiqgKMKOMI2r6qwHmGbVxh0BPytMg5HkpoVR9JxCLWozHKOGbxT6O7UGxS+wUKBRqvKx7yBHcPG0RvvrADTmrWqo+PdhkvCUYDRlzBFsvDAQNO2b61ABm8rA4HMVZmEAPIkN45jxxf9B/gOO1wplw8pffYjyL7KJkZadwDEkqOdHGz9lZEbvYW0vwrMMK6lN+VWqjLpT+xY5AL7s2gT596xCIEaqAmB/dM5LpRVMiFU0BoRvOMCeoq0XaKRAAUe4zyLIM04A6nXKVkwN6Pf2sZ+wzFhPZlgDkFrCWbHohqB9jqbUYyyEiKFb9AJgEl2pnKdZca6F1zorM2C4Q6cy4wpfNIHBJo77RPEJzzJMIAA1x1HimEaBaRao/kQ0FpnHIT/KaemcjS02rcaU8RBkrWqZ6W9CUUGRdMwpxpWGlUxuYUQ8dJmeJb+xK2AxCqMS4VdYlzLFEVosdDioSVCS4aWCi1tAZvCj8sUfjSmCChYQMECChZQsICCSf9bjKCzLR3elqFVuUU2aJAGH57BCDrbYqHFQ0s447dBJ7RRSegVjz2ZUL/+B7OcdMy9JxNj5NENUDqdhFVWJwFRDI9S4+Jqjc9GBrXDRqxol9jPnc0QoNnMfObSCbRPC0TTF7A3bVy8VCUrnwKOLZS3MK4KTdtF6XOsmXZR4iAGodmyUF5nQPcM2mxE5TYEGmdsjhnzCWWY+mHN/Zw7RQFdMTbMATOvMcHBOLskAlE2UtrHvmJSosdltQjoG3oitxCEYuOhoHMcg0nwGVrlQCnAvCyIsJA2bkRjvBECk9JBlWhaht8pHlrOSO8N/MKa8OxLu3sY2gOMm8DK2maFdLQtLLXZoRiuXeS9sRm32MK8AaBKDJ9nG4N+C3wnWGhx906EJzK0lHsXoIsAHS2ttuWj/o0M8JE3sA2mC9lOywBfBvhShVbAIAMGGTBI138bZr8xmAQOKTtGcf+NDbLfGBWgK9d7FWCrAFsF2Cr0Xofe6wBfB/jawdcBvnbwdYCvA3wd4OsAH4kM56IMs18G+GWYnzJgKB0lmTKgKAOKMqAoA4oqDKFyKBJmErv8OXiRMSp/gZmEbFRhs1EhVAn1XmDXyAS0Zy6uCkrhi5+gmdt6NowraMJ89QMw/XD3c5tkg3GAuO2Y5zzSVhKBxBrrtihdcRCAbDOaFPOpKMzzIOUKdTBti3BAIBrODeBCg0YZAg0Mc6c09t7WjgA3uHW/cO05EdYtUH5wKLtiNq71SIEn1nqkwAGA8GwLXSzcWy8AimNK2DL+O+Gxcdw6tsVd151vGQyRKrx1PIu74xxtdZYXV1VgVRIZlH0mQv9suDy0bPi5xsBoa8OyLmT71saLabTTCf9M+D5b9wzMscLTHoxvyvi32vI8sDXhFsNW6WfNuklkhQwO0vIqZ4fGlbK2dqGdURh+WpZ+gjBFxLXC2yr8AjVogFIpPzTHJkuJMoB9azAgEVQpY+M5KrEx1qYOv0DPDggspirDsyr8wviWKUKLhRYPrYADAxIRCgYk2mc6tMrQCjiMx8GKopiabGryqSmmppyaamrqqVlOzWnzFhM2NmFjEzY2YWMTNjZhYyoAc6HRiYeUx4EqcIHQD6xYTmjkPlIFXKhoRIHdaxzvsUenck4hOPts3ntVWtaA/MkqPj4BvvTZaZgfgvPFQ94wSsuu3oH2aTiKOYkCLA7O2M29ZG2lDOFb6DNAxoYbCyOOeOWe2QSvQvlQaOW0LG7zFgr/1np04Py2Nj/Aa7cdPrPpkdpuNoEylY3mwLfGf6dl4eDp0o/DumIAXmnN90rhnvCt0vXU4DjAxWTp37ZKhxfpxT7E1Q5NEOYhF5phiSr3FF1DKLMUmB5qP8DoC/dUTE05/UxN3+rpg3JqVlPThKaYsAkWgIkJm5iwWUHQNtXUnLCJCZuYsIkJm5ywSTY1J2zSYUs2QBwiwEvcAHIxFJFfp2nbAgncxdPB6TblaeNuNmjQt7UgLJmjUl/YlE1flwcjc6cs7pAZbfN8sVIQKkGYsIWqCmRIcxeG4P08KiiV2LIlPjBjm/tccJs8B/OBlU0gLttuAngrKp+lLZnPt7ZhADZUDtVLdOqX7q0OvbeHRSHQpOwf+c9K1J8gQ7qUPrXcnguwP622hjy3kMpljLNC6umpzeVmhax8w7iGKnyD+Qb3DeEb0qZ4J2see8Sh6PIPDHf7wpp7lzhkMOH+qpwlAjwpVt4G6Ye7tBSXz+2kn8L6cKx/2UW+CW+AUNr4pWe+6FJV+rhKDC5HrR/T3FylhZBtAiKGrWCnffUNDKPChQQooA3JLdip3UKCPcF6WY10MaxcWy8F7AvpIlKBHVjRAX5h+ZV2PgT7XYnp8nB8WZkAoBiMuizQTQ9ZPtsCY3FVOTWr6QPIk0a5vMCqTphrVqBU75p8aoqpKaemss1kXWPnK9TO/4GBl2ZpXb33FbxA6NosuIvpwQIgWHbDxeL4pNTJZAfRYVhHbyuVPX64DSGwE4LZx5ZFM5eHDNH7ClPAYX6s8Q4WscRiEpDyXaJpD+CBM8C2kA37pg0stk0sxAC9waIY2CqL0GLYSiYndp4KrNFYlIvKhSiu6oCgawzK9qE9Tk91QawNiVkDHfxF66pwOgZIuWhQDcoGxMyjWwmDLxG69lVymPWlllbDgNQOG3bpKloJ48JQpfObOiMqZPFYJqtcvjB8gSZn1D1dVR0vXcB/bFip85mjWIFnGpc+GR6tHbzyIGxeBYwbzzMI1WdWH4KvUe7GlvX8al+JA9Qw5nLRNdZKE1vcujaIFODZIFLubYrYTStgYpwvOiIxqUy67zjzeG0xHBBvXRSr8sli+Kzi/pl1SUEws41sBfXOiUMck7X8M5QiQrIW9MA6VAGKTYKF72zqFT7jvvfSBlliy4/c5UoB85EBik23gFAB6yuBtbTpXWDKwlHCvCiMGsVngYBcZozxWTD4nav+Y1MWbJ+tpxWwudhTEL5ceLv2cYXcW0JhrnQl3chLNLaCNa3kfv6sMgOUW1ae/qrCw6u0x1G51GWOZkz7zBg/Xty6fvPYeEfUdG3hNKRTm9llP9DTB+XUrKamCU0b9mibbGryALeasFn10jbV1Jy2NQqVIC6yAsnBQTChafUqPKKxYIb91vAAzEzYzITNTNjMNDYzjc1MYzNhbDZg3DXZ1ORTU/ie2fPUPVVTU0/NcmpWU3PCxiZsbMLGJmxswsYmbGzCxiZsbMLGJmxswsYnbHzCxidsXEzNCRufsIVtwCzXck8nbHzCJiZsYsImHLakYF3s7hJYRBOqJgi5VTouiCaYVwi1reuLYX6bYgvlf6yNFMsYFa4GIm4+d0wAa7RybelTGYw9HrDsh/3UFmvgLr4Gs9ytcim9JcrnKUBqjc2/KjfKIbLaJnPaJtjLbbq1zU4AixT3FikGZwZIN74SmxTeYi5cEKJr2WAJ2EA23AVbMCIoD8LQNQ3dc/oq1pZBQX4qx4QlvJCtgH3YZs7AfrPyFcTKGOXfGgwwgs1mPUHwX2OZmKtbADNeuCc2RxGTBtBTbFvGtzBkQbo0A9vSGHYAbgIcKzQwNAATm1h4hAc65u1x9wg5KSy3Rg4DndXGYyql+2WJbm98ZF3cEBVSOZQ2RAEayObhq0ppB8wyVFhxU7rvUYS0b5FfQuwbs1zJ/ho3hf2UCREeWns5HJjMJXVAkT0broICAZ7m7mk1fWvCBzagxTbZ1ORTU3i8Uk4P1dSckEG61RaKtjCGk+OeTsjUhMwqNsDQMC92i7nIUE41NOX0AcrfJZbcnbDZTB1ApiZkakKmJ2R6GpmNOcQJwQwA15yGFvYRY3pChlnMrjlh0xO2sJKsnJCV0zSi3OaaE7JyWjQ8Gl1zQoZpY3bo5YSsmoZWTdjwaIRNbyuMwiHEqglXNa1ZNQ2smnBV08CqCZeZcJkJl5lGZqaRmYkcrdXRNidspvRUzsyEzRg3d7wIyDhyAPuQTw/F1JRTU01NPTXLqVlNzTAyW9DANdnUnLCxQCCcTdjYhI1N2NiEjU3Y2ISNT9j4hI1P2Pg0NqtKwNj5hIxPyPiEzBZehoYJnXVJ0ujun1CJCZWYBibk1AxLxicOwsWES0wDmzgInzgIt+5EBCb51JwGNrEQPrEQPrEQDHz3P5uwyUAgEweBApX+4TQyNeFSEy414ZoYCFfTyCYOwicOwicOwicOwvWETU/YJg7CtfIdmxgInxgInxgInxiI1XVcc0I2cRA+cRA+cRBeBmTlhGxiIC4i1TYnZBMD4RMDsaqVa07IJhbCPQtJxKo4GEdgpWosqr0gVsFLLF6Jzhy0dYDVn6NNGKwgNmWZCXRBus8YFt4D7gJ8VqOCx0AXs0E5DCQNbCYdS0pPY4FpdEItmAVCrMP08zj8QWD4A5ScQjN2/Gs5/3Xs7xTKIjcbJqB4evxzNf957LwQ6LyAkpRLfdfzn8emX1HmsJfzn8dWRFFZ7Mtlu6v5z2NjlTA57Gb+89icI9FiAzbdeXFRWcx+LWMpX7IMcsnmP4+pWTpqXsbO5z+PaU6KHPY5zcmkqLa0E79oyZJzopMx0ckc0ck50cmY6KQlOggOWhj7nOhkTHQyR3RyTnQyJjrpiG65pPic6GRMdDJHdHJOdDImOlVY7IvOEjWnOhVTncpRnZpTnYqpTlmqgzi7+cyrOdWpmOpUjurUnOpUTHXKUd2i00DNqU4lZcZzVKfmVKdiqlOW6kAdXBj7nOpUTHUqR3VqTnUqpjrlqG7RsK7mVKdiqlM5qlNzqlMx1WlHdcsFrOdUp2Oq0zmq03Oq0zHVaW6xLx6Qek51OqY6naM6Pac6HVOddlRnFrHPqU7HVKdzVKfnVKeTwuE6I7XoOdXpmOp0jur0nOp0THUaqQ7qQi+NfU51OqY6naM6Pac6HVNdWVjsi8d7Oae6Mqa6Mkd15ZzqypjqSm6xL55x5ZzqypjqyhzVlXOqK2OqK6XFvnjKlHOqK2OqK3NUV86proyprgQqAhvRAtGVc6Irk6LrOaIr50RXxkRXItHh1TQLVdvnRFfGRFfmiK6cE10ZE13liG7xgK3mRFfFRFfliK6aE10VE11lWR1I8/OxV3Oiq2Kiq3JEV82JroqJrnJEt3jAVnOiq2Kiq3JEV82JroqJrtIW++IRhy9By1FYOJFBxfkSinElIGNKrHKUWM0psUoqzTv2t3jwVHNKrGJKrCwlQvL2wmLOKbGKKdE4Slw8eMycEk1MiQYpESrwL/18TokmpkSDlAiW3gUeYOaUaGJKNMKmt3C9NVLHP57ToYnp0Fg6ZIuM38zp0MR0aJT9+SLnNnM6NDEdGivoyUUh18y5n4lpzliaU4tyopnTnIlpzliaY4uM38xpziRl/o39+XKh/znNmbQYviU6tlx8sJhT3dUzByHHAe3bFEJSSrewTFAvMkH7NoWQFFAshB3FIiuxb1MISXW8QmZHgcXz7H1f0pmL7IVyYPAB/w+Dag2haWwzxZlUmyss3fLFHWvf+sIetoykrV1Wutpl6KApXeCTsHFT3JUdg+uTClvmwFZx8NVvwCGuhPtWSfetvexET9VCtPF1QHyNEHtTmS5dEJWOan+g1w3DJG0mFmNLVUBshgNUjFmqB2Jr0ksXXqWNSyexNZbRPwGXOQnMzYPId1eoFeMM7HCuS3vgjRuQeT0vs2ELpVclZpHiu0q7khdVVfqGcRVBXHAnzoX/ngnuy2YwwfnUFK4YCBM23hQ/VdN7PTUh0AicJDZe1j00oSmKqTnhEhMuMeEKZUCYEBMyMSELtUCYLbTpmhM2LEthgckJm+SL5TeKpPBeYc9x6kYNjGjG9CrjCjlhSK9wd2jYaiPchXYyf8EeFEqxhnEIqbd1NmyYnwlXecmolGnhy2ZaZz3WoEDgUCEUaznjW0t7Cq89wh2ClxIxVwbVrYZwsWV4v430xUQldyVPbSFiyI27qkg6VQud6oFiliFkIWnmgWhcAcjPsBVXoegMOm6FcEnKtlarCE1LS7YZypQyYYM5MVRK6ulpOTWrqQkRbFi2H+7pCE0WPgjlSpkI9UqZUBM2pabmhE1N2NSETZnQDIVLmdATNj1h0xM2PWHTEzY9YdMTNj1h02ax+mmR1CUr8JgWy6VM7FtkthyD6yAIzYbUVVgO1N0MpPwnttCS8oWWtLy6W8iWoQLnorTF/7SrAKZszUNur+uQyr2UeJETRAmpwv8AKEfiDRtYThSR24BG8NVod2OjwKo59re2DgP8Fqog2GdVuKAIg5BcE8u1+Ka/U4hhQSnflEv3C9lJup5SK7qUhOzgo3rB/YzckLkgReUKF2tfAhOKA9r0YrvJOdb9sAM3lcsWhsAcrBiKe8nmQWruKgxjiCjSHbjTub0oRjFfek25Sxxs0TQspAYFKzAFFQuGYWgt4IL6CQqr+xjMVsbAjALXCpv2VhjX1HgDEXBNLKCBRwxk9Eib0CzsXWfYrIqpyaYmn5piasqpqaamts10UZJqSIUVCKvlQqhFuPuJyY1yV7f44nChAJ/1y+IVEK4S33UJvQIjzG3kj9Auz6QwU+U8X360dOwZS31N+TnInuN6eRylGu6q8ZmrQnmi8iX/7NYRruinK4+HQV5lSCbFFt7dUmDJPA/PpolgzvpUFA8FCHDPLhaTY3g7XmETq2wBvArPBIyEdLc2qcoGE7gmXtTkmuDe22LqFIR7KntvnzC+kBzDIj6+yaemmJoyQAhV8ZgIZfGYCHXxmAiF8Zgwvmodk0UxNZmriMdkKI7HZKiOx2Qoj8dkqI/HZCiQx2SokMdkKJHHZDFhYxM2xqYmn5oTNjZhYxM2NmFj5WKdvcKqL3/ZPLTdWzOMzf7fu33z6eGbH354eNj87eF9a/+pyg3uh4dv/vbfG0/+D9/87aGwT5j9I+wfaf8o+0fbP6X9U7kf+B+6XzLu/joQzP2YuV8z93Pmfs/d77n7PXe/5+733PWBOzjcweEODvdwjOu5gyd8fwrpG74nhe9K4ftShMEglP/ehJnFf8JUF9ezCKfL8jSyKoK9CGnLrmFhbsEyMDu2ZRg8gUF1iIYR98Ks0EW6vH4Zivwy+eXIzAeLphairYmp5QnKRVTLGCIU4LpaRiGu6H0RUDRnEIJNTHqx2qV4/SAamOgSDULEIBg5KhqETEBQVJQBYVQ0uRBenKGkZRBV8Q9/efc6jqfzN4+PYz2M9XA5b/vh5fFYD2PbPZ76YWyG89gcj81wjQ5Uw2V0NN0bc42u6bYf2w/tqdm3NaKEfz3+VA/9/2j4/6iK/2HEx7b7cGiG9/v2PNbdronGC3I2QbCW0RB9EKt9eG3PYz98ft8/vz/tnyMK5hTlSRLjbx4P7be/ObTfHtrzGI1AkQMggf34YxeDoBadrW6EHXt+hlSjSkX0bKgRkpCiHcVvO+d+OVsjeQUvivUlPtRj043v9+3Q7l4Pzfi+Phz6XT22fTy/cOxTREYeWbxg14T+0o6vl6ftrj8+Hvu/todD/Tg09b5+ag/t+PkaHdz0RWAjSYIXMUuDyMg7SZQXCT+CDFqCwZI7ixdw/8HVWEgmnR2Lvpq4evjUvuGa1U/nR6YLuIlZ8PjYMtQhzjIUAuWRr2AIioNb8iRgVHRXqwKSYyXkGU9ooIY5gSY3q+YKzaluIy4MJdDvB8n59f7YX+ph3x+aui8U3zpibfvHn87x8VJR8oHIrGeE6mojfO7Pr/2Hy+Nrd/54aJ/iFdVfsKI8PpQNRcBeOi7IY4oXXF6vbDs056Yedq/bn/BojDcbNSmLErzxyB9iUd3LriZhgreK4gFuboJktBLncXu1HK9196mt+0fxrAuh5O5Z73eq3mlTPe0MU5Jp8SQbXcdSC8lp6FOHx7sXU1kJTkOzV1MzsVdPRQnRHldiYUVyLbo/9nR+vByibunssboI6Mcfu/RwZqSMlJmgfbS/i/z+3mQ2X7QhxNqxfO95XN18Hl8fxmP/sR7253091udd23S7BslvHOru/NwPx2aImI6hCIycPhGRV5X9vd+Ay3Bi1QUKQBG0RR6rQkcgIJRmGQSpoYmEGMhjimT2MhYvfiERqDWhUu7Fc7wl711A2cQcoiJPOHpTR3KIohbu/zcFm6R8ldguSEmFPIti+YE6F28cCb1sWiaUSu0bklIjeQryKHOi32ZuUqjWulgm54a4X0ItdRmbEUry7CG7ER044Ou6b5z0+Kr9s4npnoJNdy4CABn1t9lz6E6Z4kNEFzQF0yB2yX7O8qAlCO/fj59PTSKLTiv3IDxXctKQcNKQdGsgvU3VfSfdd9J9p9x3yhuh3HfKfafcd9p9p9132st27jvtvivdd6X7rnTfle670n1Xue8q913lvquCcTS2pEbTtThRQ3N+rdOputLnHzS/CVAk5lH7zO9cN5kPC+JubLBOhV/Kbu3Nxiv26y8Wllft1sFcfYeVut4eY9Hv7oOvfnoamrcWTRCREAQlYvLWTlpUrp/O/eEyNvGBSBp6SXGofjqPQ72LzVeCVtQyE7XbNYdmmFtaGMlMaREXgJ3PzT5hDhSLEaQ2X+92/aVLhkeKSxn7ogPUdpGaCEEFOca5yTD1ere7DPXuc9w32g+S7dtlqGNiKEkdjhZK6t3Qd5+PsXmgIE1XGercje3bnBI4OfEZStjX8QbkV46ZBwjPSxlfHthpTFQRTpInKf7V+4gwIXZ4OrTmLD1wLuE4YkWv5H7/LtHFSXEhN8x9QqfgKL5/kO18L1eUoJDtzQCb+ZwQ+pdswv3+HMuztwjOy5D6p2i/cNK+TaqBddwZ8Cnfaxet92/g/oAJuhzGZOMVpDMsOgEX4T4/t5+a8+PYjod44gXpG6VFvfp5jH1EktQjZvKxXO3qS912sf8EAsPu7uNLtJyGJHhara9fmvikMKTLhNPb5uVlaF7qMSH3giTVzMy0kZKYJ3Va1q/bmKPD/aP3WhvqyIoGMS45Q+6VhhoZs/KC1uGpGaLph/o9dx9hh5d+aMfX6MyAAM28xhRr1FnA7a4+HKJDW5MO2tyEHuINtaZwhmiOVBqezTBNmsueMEE7WnKr5WFNNsCPHz9uX5rmAxj88C+6TaxDLvG90fs7i/FjcqzBnVgEoHJ9QfsYGJZSuftwO5xe6+5ybIZ2F7EO0r7LaVn8cO5jRX8tcCNWcZZhjs3Q1WP7FkuHZHQLoxfgeIo9MdQI6QFGhLdiwnVD9KpaqlRSyqRXHv12SZXF25VEeiK6+vD53MZMlTRbZXgAwPlrvC7kmc9IC13d7V77+HiW93toLZRoTEqSfC2zxLFle8XIcENw3C8Nh/t65oR50FuGZGLSJ12utCe07rp+rMdYJyaVA5rtdeePsTBnSJk+I+V04+vQn2Keh0XyvwBSJOYY2m9IC25ddB5zUmP1K6ZjEsjITt3nj/XnZFeQmyuzKz5/fG2GWEIlA9QyJ8SpjkUkTWtRNNs5RRMOpRcyPoGFjeLNsTQvObW/eYxtjaTbnmZrp/48Dv3pNZakOXmwZmbtdGh3c/ubJsX7DLMFWHGPSoroPeO6/bA+nWLJEq4XvNdXUJ9OQ1/vXuPT6QskVIDzqT3OBEZNK380sGFnIm+BpGP86OmJN5Ag3WbkkUFFSnsZ2n+XYeRDU8f6NK0LZQbSX+JzUpAObXaD5jQMdayQlPkVWjgUf7m4dMMhCP18ujw/J+cP7a2jOf4EavubpxicIA+hDLhY8RR5xTOrVgxjuzskhEqbupYINQN213epNiVpUT5DgGP73O7aWK3H5Eyqo/QBnkSTrXFDSozzlOlnOBHTJoqjdf9z5NSECwDvPmDP5/ali1kwmQdA0wBCSYyDt3nOCXD9rp2JfiRVZTt2OSaWKUlHImW2cqzQ8yuH0YPyC7TiixwTSzcndZ/MiTkmrh36oMtQ8DjWu1d4dH6sz+dmPD+WQshqr6NIq4qM8sxMOID+kHSR1BSzXWyOp9RATLKpjE1xBP6RnOjkto98WLfZmMYFdyIdhZsH1D5dEjsq3FNwm+E5I9NfxkRf5qQXL5xuGWD9rj+eDs2YJDFwWjqhB/3WDIkhm5MOZ/o0e+vbmFWQ+QgZyv1Yt9EyclJN9JybMv2vKNiZ+YjCh7Hc870M4onJKGisymZlLUKodx9OQ3+qXxZc26RhOdOjevcBYyUTSPcHYT/V50ZHcYCKlgVIagEosZ99JZgwttKQgV9RSGFO64EOHNou2T50/DstADzV59giAXVA8hs7RI3TNFh/bs5tnWSPkJaOzKEZOxzpBLUQf5hISqmEtGjQWkbc7V6P9fDhH8f66beQonKMBVQ6O4XeFh7mYhbAeTfUp7Z7eb08PS5KxHSG1x0Ix6F+bg/1eBnqLYxqfG32/e4MOQ5Nh46H8/jYvNWHC27d7et4jL0upJNwXSgL3TnDgGPjHrkJaSIL0K7yE1Kb4f35ME/NmIrn5FGX2aDNmPh/FZ2dFjYUKYI8NePHpokFkDWlITI5zW2vi2jadOh00D499EPTxhufdvJnNv6hj08yTgad57rSJ5JkceWBeTBLgTDrvBeAxuy/pEOacgPcfUiEU9I1R0tmT0eu4lOgpDVn+hTo93HuHR0Jtb7L+0N8NgpyE9Ig4pgCMtE0w7/7MTbn0Vks9K6LJV5JjSM9GBOvSirU3RJC+TTUuw9Nor7izU13E8hQt932p/PimYMvfzo/+o+S2EEypYleuaGv97s6ye2FsiBh11W+q3ld92noP55TFkoyEtI68XQ5HGbzWNDpe/Q8XhJ7F3kORtaYRVCJ64Xa9WvevMhfP9EZWVpiuS+n+pzkGZE2IHK3RRKkojkQeeru6sPucqhThZCcmluGFmAe2u7DvunOaYJxQfaTpO8AM1axadE2MhLnICZ6UsVJDyNJortY4tZ0Rkaa1rMqDu/qbt/uk/URpHK5fkoEgL+KPYVFPuwoCyqxHpLHzg2dO42XIYkyIImFFKd2dRLBqeg+rZpgdvU5ieQx5FzRrGdXjw0EZaWhdmQ4Fm0Wc6DiWOyCZIvrgCyMCBoZzZPbT5dzvHJ06DrNOppuHGJLf0UK3JkNacEkfKekgwdWIcWhLxUZ9BmbFJYhRoFTkpaPaGbYDGPdxloJHV1G77bXGuyf8VmfiZpehTMjpJIuv0BKYAFavFNom1N0+FIQX5r9XKWmtQd66l+bXZKORpvIV5k7AEuj30nL/WJK6DLY9rAfEq2VTpPJ0MfQH9tLZDAwdNWjTH8uXawNMtLdleHDACUWmMhg0PUc4V07zoMs8P7au/t1SOQ4QQfdRFYyEhi4O2dySUkf0PQ5eKgv+ziQ516L8u7QxMKNJAtNBZEr05+m7mKVQNJK6rq0AODSJKcyn9iwCi+Rikjb3wqUpFsslyZAM65DUw+p7f1+3XB3aE9PfT3EURyCAkRz5kMfn/CaHlSkilPA0kmCq5Dv3379Zf98SOJtDF0Rj2ZTh8sZD7GXeN+RY8yMDSHFAVx0Lgu9/n28exWdcCeuGV7OigYwr+rrXLo9VFYDST4JV6ft7Nn+Lpo73ir4H5gWH43c7ZtyVz6L5+fnnebPmrNGimetnhqxV6x8qmrzLPaP52H3ODQvzaeT+xM7j0guRIsp/T6Rvkl9OQOj6eKDVZMRQbl5ggDLODSG7AtN+f3h0OwWUiS+oFjYrj8+td1cGaa99pluHY+xNVuSjswMF3UfRWDyKQYUmHhIuYTaRMAKueKZhQTwh0QVIykiw8X64ylhYRVd7GUFTLKTKzq2aL08p4N4noWjfgFX7I+n9hAf/4quRkYrUBbOsN3t/u4gKh5XUSOj+HOMwcZEJEmf5LRlHLAWVKJMkxSXkZT642loXsF29pZ4YkkBJ09daXQK3sB7tySBgNJju2CkPSQzUd2uOcXx4WSdnpnBdQ1sku6yZo5bT8Da9d1ChjEnzSS5Key6Jg46qsiVyHYIwKRVB0gr0GqHUl2IDMPJdenc7C5p+hZe9f0FnTq3+5kwxgr6yM72qz8020P/8m6uRDJGkseNIOdhropWajIn1QQyNVQw2sZwC7iuH471YQaUlBMyjHICupgFThpU6DrU1zDHNon1IB3YGcYJ4MAqnYoyZHXj7CZLHGpkgK0vy2P/JImAVKT6DdW7sAvgJEymmq7tkqfacbjMRMaKth2vw0pY7ZcoOR0YM5M4ezJoI6O/WUCpPY0UCFS0VpOTeD2pcmHLc1JSJmLP0qyG7LIBtlikJoPFMqZLgPMpVjrIErvryQMO3CXNMCcluiwkjJ/th2Vv+enz2A+71/D3ZahPr+fH698lDnTSjpCdnaE/RICqL3EY9HgDQ3wckPoPEbkQZj/HF+xFD7GGtObmygnBFuDxqcGKLOexh7K4sbA+sfdJPs9HExBg3/kP35rdbPkK0iWSPUZSPJdjHdsMrg68iR/d1H04O8+nBpJQwJmQWBEm+SEcnV8E9d2v/v4w/vr09y/jr8fXOGWbkSr02oICkrHHaNNUAlDiujrRXV2H8L99/7Eb+5lYwa+BfjnMd/6fsSBEivIr03DaP8/7yq9sew/zWkgZcHGa512J46EaQO5EBBzAXcc+UHSsKl3RXNC4b+q5hTr2H5qkwNuVEjc5aG8C+bm/jJenZuxnx8tVzOrk8VuD2X9oE1vu/Ulyu74f9mDQipVeTccBZFbj1MZsVpCnZkZiOMVGIjri0D7JQrJ7mjDrX0V83Trj5ySi3ZCqQe5AusThh5qOPs3MdVL/riJLRudO4Es3xuERhsxoy0RsnC6xxP0l9pKh/nhIJFuydleGmocmiQCqSJEiMy8IJTa/0ZZZeqERTMwAyWKHXp7x/tjMTDVL1Ri/wJwx9OfU0PUFLjOAAqEf/enzIQUo2PUeu3GTXc5jHHrPyUw2ry3SS4DAjv2+SXJiyXTijIa555VWu6I2z01S8+FeOR4KqsccIO8ameLfFmLlSUkPsMzyqEnTIT2JAOfUtzG/0WQRA5pppdF5nPT0rWbo7RvYB+c0j/B+XW/fJAGddHgQrebum+YUH8R3U0TzXF8OcUw5zdFJ/rdvnpMTCq59vH9OAEp8WpJEngMzD2ilqWY16GDfjDM7LicrpdDUjGASBmrILJLcXI/NcEymuyLTEujjZt+8NYf+dExNF6wgvfyZzeqLEkfTREoY12l/FLjkIi9GxjLQp8S+xSmvY2GjpGue00ythfIQcBVFctTQ7izaK+mBJaYekgPketXukv3LCrrOC2mV3bdJYWoycis32cf4zkJORmZkgfAEyBf1BHhAUmmG9k6v1iAKAOPIV0361dbDa65AJsxK0wHVGYpy0GJtik5wX70XJtx5FpM7LY9mjqn2vOvfkihWQd7akod0OsTlaRTN2knNYd+ez+2xPdTxLVl08E5m3heuHCzoDPnMTraAVm+ka96a7vw6Nm1H3XdI5xRmh4GG2pmAT4Zp3VCEdd++RaeBuTbmzHOdaJ/Rvn1LC1nT9SIzFB37PUkdmj4x27c2ZSssYymgu9LHUsD95T33fVwhlLSb8BB+TdMepG3G4jp9hNBySb9LLiS4Py0gPIjirtaucQ1JOqtBxf5BnFpT0VmUq5BilzxdKsurjJEzKb97+qTsMHkqJMWPckt0nPiLDx7fvvT9y6E595fB3bPl32CE3//2+NrU+8fxtR3276Fi4OfHJ0gbexwaiExshsddPzSPSW8VXUowQ9LHJGeiJENpcgsDUOIFNmQEQXauIPMT5uO5fmt3fbdtd9G25eSK0HwWgaYZRvcX3tn3l6e4CEJFGisyU/XzR/nRfHz5tPs50rlI+YNm0EN/6i9JGacrV8CDmZvAc+zRgnt/GtJUdzImOgPskgapKDp50ick07zyMvTRqSZpBYDu0ueuPsbFRSq6Uim5fultR/eXj2m20cRIMgTj/puqmqRqpCSXLsBOg72S0j5JMMZtZQKb+twmBdZpAYncb019Toq0339Ha7OPazFVdFAePan7uIySot1tJJsFGH2SPX5/SGZ8H+zjS2KLF7RlsSBZbvMMZQST41/RtXuiM3URINwF0SRnCn0ykZu+acfXWECqaJfXeshQc2hSIYeT+jZRsnw9j8BhScwVKxeBp7LELWgO7SmpX84YrbTTi3X8th3rQ7v7zWMTGyPo4gY0rKdm//6cJIUy+naezPjQvZtWNSE3DM2IltzE/PqInPv3g3865Yw+bI2vrk4It4gDLdbs/jNMMcslUTlPMyjp8YbhV/bghwVhIAP2dOjjOsZ0YfAMcZ1iI4uiTTekJbjp6kTq0nTSJj0ggJLmMNHuEXpIHeTLxN5C+mijmS6AScny7tDiZpaexBiZD5nhAd2MVgVZA5Zm192+3w1t1x/6l5hyaHN7pksvaTm5ggZDn/4IJtZKSDk7VWhzYM9JOQbGyKM3N+9jO6alD+i7wlbPXeuXTdSB++9DaU5pvbH7bcHNMCT1OUlri4/78UpAcilOLI8u4jrv6lNa/5AcNgklln/IYve/4HqkZkzuWiA1IvpavuYy9L9m8f3XGbcBCeat6cbtCAUAxi2cG2/tPi7AIEjbFs1j31LJR5AFomggcaUEOpWWpodP9TH1aCpSNMocPJ9qyFqKl4yUQTL0aeEkFw7kI4yX4UAOT+ptqMhrpzKc4tOuGeIsI0GH8GfBxDEgkhYaaVYRp7Cy63smHuRt4YfNp1NaiZoupZDrSZKCZMh7EmgbMUAZkrm9/76+5tPpUKdUTDKldTDxFV9OYEQ728d63L3+49tv69Pw009V+15/bv4hiSNhkpbbMuzu06nv4IxbuEWUdJFlV6e/jmS2sCI57Cr+iN1MOHCxZbqpBJ1zd3ON6ubTrIz2dfnKh3mgeBwIk+bJZHDs2qQQlryOSL+tvp0HZbMq0pBgEcW43xa/PIc4y+CStOi8GiEyBx+5sOV1/DmbV9bMgEyyB+hkEKoA3tp6OdN2HB11FYV/WxB+DOzdr+YZIrEqSLEyWsy1CNJSIrRH39Pr2p5I2IGgyyERpQbXM14dpkQIJU/dxWykLNx5rB2pnqx1MrkciToslot23zwV56b5MKb3fZVX5SymdbuJ7gK8d1CjOfGMVmQg2ipxIEwItnoZ+svpfNjHB7uortNVitvCTJ/rWTqNJINz6cV/rts4E0rRFmlPqeTueq4Ph6f0ZglGVm6nD5rn+nBOg7buP16f62N/OSc5a7RQSEqpz2l4x/12/0X2SO2uNShJRDbFu2gwTZ0EqpN2MFIkfG7qtH4jI69sWbQ+ZqAmPlcyIoG0RT03abrcvVLmM0ToJSVtSVk1Q8jNGHuvSjKkJ6SJZkY17l7fXYbDP/zDNk3AkXTRodUD4Ln5GA+UTDnlwU9GsubntjkkeSrUiKO82GVYia5KF/LNcIH20PzdQg67oK9fznXokBaM/oKcAwCTGKRIh2kWSlLR0dCeQHojI5S0kAzpY80tVhLUKGkHWWZMXZplrMgyvRmKbruk9tyqwEtz/7aLb0VR9K3YmQ4N6WXyeePE/BpAOub2OfblliSfyi3ep/Qer/sTop8PNf475iWkLYc+n3q4VDs5WkiCpDlRv3A3NyNN7j53kx5e3yf7TdLAaArv+7Hr07QqstTiWnz7c6wOkGpHcQUnFK8IRfIfFlWSu+8w9gIidZexj7+YX9N4Rzn1Z6hxMqZ5FCR93DCBAC6N7KELxtKctB+Ol0Mi2tNVr7Ij/Jgke5JhlBlqTS7zpMN60ht8fBQ7DXtoUkfW/TWpn4fm50vT7VJvkaDL7GWmzAGLZX26HNRqzQsHcEwrXtyvAz4PsdWCjoR22ydRitPNmRYHJirP+E023R5Ly5WXQ5wsT+a/+j5FlU0okInbjswGy0g4AGW5/pVg17fM3Ga9e7508yKK1FDd9Kb1fTxri/ZILnDCI51lZ3Dynmf6oHewkqt+1+Lhcp0b0oAkMhCMJPCXpmuGJDOSdFamwg3Jlz3UpOxZtne3wDvU3culfmkwp3Zokqutr4jqNsuRBxvzsBU9eK2TadUm0qRMcx0P6S3NDqXPI3IzvzT9sRmHxMxG37dN0u9L7JHmpCfU8zKSZb00Y304LAclVVd5FI493rCMkxtmlm1dXeeb8Nvs7i9NYgMlJbPVBCoA9VqfkoW8yoh8YMVtJV1eGiwKcmi6l/jqJkmXHKe71T49JXf2kumeOeJq3+Iyu6wg77+LBUgC2rweN03ypHDycuifkhQ9OlRvBcrh828eI6nQkOaoDMH3s7Aoav/RPAHzM+Ke3F987eWUhOff3Y1ZiC+9QJleXNLLtBg5mAy9DPW+TUM8SAFt9bB/GepI1qtIvS7DuYf6GAdWkPFTWSDdHuoMJ4WVaVmBNF1cgYq9DXTsZw7WKb4zjmY8kZy7DKxNDbSkES0DpI9yVlb054x8cTnUH+KMDjokIBbx3UhDEWr31+fbUdo2pWWnUWYBLtn31zjdmjaWPVwJw8uAvoUkr2b4zWMCkw56ImFF15xzMuB8tdTGq/g2cWxysnoKPUU6nqLscLJTVB+eY2sieWiS2+i17vaHtMgzyUQd03qIVDd6RyDwWTVe+jIY8mR/jWvDG7osa6RULYN6S8KlyUmLbFSLsJo6qQxy7wFmSTxWmu7nqxbKjz92P/7YzYoA0kU/8+DS8kV5mlizjQHMmdhBcocMSVk4xFgZWSdrFWJiRL0tzCAL9S1J8qrITFz6YAIwnz827cvr+POliUuGVF8QoP+KoOKhUkQbD5XeUE2b3PzJCrrQGCngvjaHUwxGkIG7GZbYXIb2PLa7JBDhfjfLa/Op3je79hjL7ozOaCQhtft9cq8WzWHpkbUvsbhDX6mU2NhpGRNgNrEzSdI3pa46f9PSr4xOSHOgfHS7lzfonnbnj3GQ5qntml3fNXAfDdx41D2eG7gp8fG5bs/nx1kZWjpmkeZZ3fnjoY2yfRV9UxQNph/av0KZ6ZiQCjJPJ8NV+vS6RLp2Nn1qpQ4xUrbM7NZkw5O2oMxYhub5tz8++DV9OvQv2/rUPn/GuNuYsRsyRphWLhP4rrJUM5xdcQFE40J9H9vnoT427+tT+35oXFGlHx++da9jWyslL9AcMu7Jues/gi5/HpsjFlGpD3DJ5/h6PD9iEO/wCK+OzYCXD/748K19GvFGkmvTyx73AvbQEeq4QAmXqZZLfWq/6U9Nd27qYff648O3Hg6aEhPrAyto8wM9G7Pavyt281jqvEnfITJH47iY7PE9jqdvHh8P/a4+vPbn8RtRFMXjP16Gw29DLRybuABTF5EqXR+CJtVseZ19/dbu37+2h6dZifD77zZavFZ8fO0P/fHzAtP8Am43R3Ds/9oeDvXjaf+8/en8ODSHWblCThacWJ20K0TdT5E5SGkyauQeqKf+PB5AbHo81cO5GR7HoWkeoWgGFCOJF+T+BM4FhLD3PnUv4e9a5fqCvuyWZuAO7evl5aXtXp5rrLPyCAVzgAckblS6Qmhmm098pvsMl3SccXC84PKxqB559fh0gRrC5/Pj2Bya1N4l6eg2WkpYSeIYLk9H8/Hzx+YtdqMKMvo74ye+mrnYwk9K+TQNXI7xfZmCvMmCtk3EFixOShfelrNaVqTdP86vKaUrH5Cr0u5/++ODzb7+8eHb3zzOSnBRC03SVruHxJnnSBvKFCu9u06Ih5+GspGBw7TC1e6fE1Kja6pmViIxl97PZtrnmN3eEiQUjtf4CtoruX3NnriYpZq1H1pBLKYPqq80fbx0/VAn4WP3excQzOwad9KCTiqA7bGOy6xoMo6drUboIbDEwnNnAY0c8DjnnuTBaUYIdRUJYVheCteiqR/ErGPqMzCkHE4b1tsjSNKJXYu+2ZEUEiycdz8+bB/nJbqZoHWyDN0jyIRmSc6YhD7kJ69Pb3xhdF2nPJiY7Ohk3zwUe3sLQoGAJqjymBgG9bXX3QHLu6Pb42no0wAFMvYo4611gOKzlLSJ0MsZ23tWvIBudxBldYL2shJDuerNWQw0mu/BbJZ+2+0Ol7TEB10cliYFCydJ1r4/OMXCmV2/TB6yifSTkQG6xarq+ey+ZUAgTcwSQMgyxJke7ZNLQunA6uScjuxrWZkPIKcVk8naHdkxf0pqJtPXdOfAwKX2ib6TiepcNVEixNTdRVpScz17TgwytLrimXRm0p3FKTnVafaV2Z4O1OO+GWu4OBfqY9ZHqM9+/ju4nGKGR5BXBme0O8QzKxy14qOm/Xtt9+xupY6NpII0TeYmE8Ow0yzaleuWMkJDkuBLmqsyXWrHNh6YoW8ro6UOCyYpIFaRXhJa32y7Q1o/iJEerxxDOsX1NckqNmnWXlI9MbfPTpdE7qPjYGgBHO+Fjcd7d6Hl5NIPJsgo5JyY143NS+pbpeWx3MSMUOXuZb6d6ZL9+W7Ncq0rMqstdxyPzdDFsZmGLBEQVzMi4Z2GZpxXyaAv1MoPNK6Xu2J79oZlf6CuiV4mK2It9mgAe+hbIvkrWi2hd3ViFaQkjNisno4wvVzSq/apUJmo9hmhkub651lmiSFv58js7iQdjrx2hGbQSRgiOfdujH5kD3l5PcvtbpwirD6ZqDX3xnO0Y1K8kr6e4LqnFKgkwHH1OoccMBtXnmTG3G+oSS+LWdG3MmfseG7ioCpDsogMRcZHtCCdGyRF/lQPfcLtaPmS5C0/1W/1eTe0cZitKfOyR+48/qntkksPyOmh1z0OtlW05JwovplunZM7jEhxj176ny7H08zge3+EzU+XmB2VdOwJufofkju0JO0OiAxwFKx9e0wkDjq8lZzjD028S8lK8+sJOR+az6fXoY5DGQxp570BUHID8/2BVh+azx/7OFGyJN1eGTBdHFxR0tuWXP1DFB+qaR8sqZ35xKQ4cGlFHFivW36AgohJLh4pjZNThFDiwtX0RZsZKGkSPH3FDA0jvZCdZUqb5eZlTAwztLOB5oqz8sRkWv+q1oSgun5I7NLsKvfI3HZZL0JKzCXkaZbtUHIVg6a1J5KVpcWOMqlGmcWaB6JWX7DRoch8PC10aVp6WiBuLRkSTca5IQ1detnzWuIgPctJXXEyuICtplAdmpf68Pjjw7dplrchLeL0+byUanZboZqcDHqAPLYhtc6SB8gaoCRomjYX0yoq3KaVlHQp6IvcM/0Jl3LFfSJTkjKCJAAb6peZmZ2cf/poiqUIJkhDeI7g21g6ymctL0N4GpIbGBkjo5YzFA5xQR9nQdWSDhMl1fdD+yE+sEm7rBOLvbOGqrOYaOwZUmk/zFSw/IUUWRf+oT2mVWTuLwCDQI71p4VqS0zQMcorvRr7k7eBJ3m+999UlJpQDVnNOVxYnIUVF1Jj11lKD9W8kF+WKLvmaWjqD0npxFsC/Sl46V0a5GGXG+OHmHt/uRsHYKXyraAtERnG1nYfmtmtZvdn4ACcNIM5b2PJEVYs2tIXmgdD0kNsjUwuSsn4cQBXWjNlBdk6MR/qYxImTAfN0ER3iBbFkPFsGRB9nVT6uDIMPVS31UAGIO/mt6ZzuoY+vS/7OvGcG1JrychBCCW9Np3RN7/lO5Sc6ZL2BtLE39f7REcgaxXlOrNL0+TzGS7LQJISXVfmqQc5rxyc7c/LrGr6/XcHH/qXWAAzdNhMZsm7l/SqWnpyMtyu7z+kTlvS2pqDEt+BUdHOTJpJ9OeEZMgSf7nJjYwtWtxfTfXQf4xnVjNSIF0tr3FIjnByjTIgxl+nByUn1VNyVBHrFGS2mT8vgh+CBljvXudXztxr+knv0qSvTry54jSAHBOwZPxdpmM/JbWwSeeiD6VZvQbnWB+SJH5FpxqTZ9ix7trnPi6Dqmm9K9Obrj1dDnM3Ku0Moon0WHddwo8y0hytxx3r7nNCUvdnMhzr4cO+/5hcoZBNep68nqvCDEC/RMZ4RUtIpEPoWJ8/NPv3UKw17uaVHf5B3SaQXMFKzyfa6phZyrSqMBnEQVusEcisWA5dbDWJ/iVB/nypz7FaVF1dkD054NYmLIB69//W54i3GtLPTnv3jnVshmKMPDJydDUeL4dkJ17fRT6Pe82v4vGSkgOji0znAA1tYsv+gmp7qLiPQ1qPsaDrNtzATj+N/cmZA8Z+4f4QVtDBAzR/3bVdot1q+lZrundNnd7Afn2ZyX2L2dTdbCnvl6cBTFrXQJOGxPViF8emPqcF1Vnu8p7MZEFYZ1wXjazJQouQx2bYXWIbnqLvEqUliGZIL8G9Pwz52MTqmKCrbmRh2LTbiEORNzHcsGea8bWPFU76UjVS+7BQEgMQGUMQFwsl4A1pTAt9awqd2nBs9/vkwnEyiDGzcm3XxqYGTWcDknaUY/tpdtsAk3QYekYm6uNIRU5af2ielloryEVPfb9eIYgCLrI+YcS1TeMvmKCjlGgTLcKK65Wt9Dvbr0tS8f/6ur2H6jb/57GPL6YoaaEmDQW8Qanqk1CRlbiFKG+K3hY22zqiIbLXPkEgMu4tQr2kkutVjo64cTLnIgrt2KLPtcthjPw/pDeA3vMAAur+QLAXFADv5tGlV/rMg7mtgCuCPR0gZWGmZZGdpAcaXxFOJt7y1XCA7j2ONXEv3G/L6t5jGvc4uwKVVLgzsOo4y1PQt8aTywifxwZecpJWr4eFX8VZJpmAu2TT+LziUIWC3PGIZVPHMa+Cvtwi093xMiTmUrqIYlQIKMs2wQ2VVARiBW2kJplQ18Dll/WQlMAy9DXZJOfpmvTWhSvHmLjtMriuSW25jBSrMjTbvMzKIEvaU7pqu+rAb/w0q+ZAkkNuus+zDDN6gDRVNUnKNGlQzU3S+LEf4nu7OBmSvQonuS7lXk7fNek2YXQAda4zkaFZkILdasmtLrlsiUz9iE/8RVDpiXVVxrm6cV9026dDv/vwru3en5OoZca/IB6i67a7oT+f3W3bC1b+Lzh2uu1+6E/9ZXwHf9+fhv4pAXp/amHXbUOV7uXRf0EJ4K7bxvcMEPP6Bbuq24agvnfde+x6Mgf3G3sAKAYeLHeTrqWYg7gsWxET8UV9PvXn1qYKXq/g6TIuLeIXSCbddmgOlwTOF/CMbnvunyGGJQH1BZJgn5wQpJpLKqhdolZKOix98eoeCmZSOVvSubn0MdjvmxiKoQutkFYKgJKkCd9fZLFLkkbpQisZEENaMpLO084tOYCZ1Uojw5Np8QkBtX+d6SSkVLeuTziQyXyb++9omyCd6l0K7v7L0rs+TkclQ3LTujbptUWZ2Uyv2yL1lsy2GVNniaFLMGa6cok1RHLrZbSe/hLfAFPRl6PRQNI7f0gtzE2ztzbRHOFyfEquR6Pj8pPUzFw/AepMTL4/f8kC6p8hBwGSRs5jv3ttkrtq6bsqcyIdQk5WZE3xp9Pqu8uxSU2tpKWVJjQLpU4udrrFpLgErn/6qUkcN3RCmn2iIrqhzwALOk2DJQ9LUk3vd7tL6t6mdXRy+hFMGjNN3/NHand9XEKMVD7iajLUpV9plmpSI+TmG/rSa6yoOwM8TyVTozM399FT+zymV72s5TfRVpk+uWv0/rLTqbVv5Whdvqt8mZNdWeNXD+a+S0t70CGx9P5M3KHVVUDAQ7kQQrdugASQ7/7n/OYhRuZX5mDFJiVJGw4zMGw5wqGp93ERQbJITWa6rmC9g6SLOC+NjA3IQJz3i4yuyUA5j/XY7F7rLnZvCjJlLwMLDL9LoCj6ugnUO2jG8KhThYZ3aro6LldakIFpdBiABfOrxMl5r7WpP6FumhA5LbPTBHoa2zR57ypSiBW3OSQQzLbe18d3WAUoscWQYZsrHUvUG0FfcJrhuQBoQSthdM3BlV61f23S8Mv77SweUhw1QTszs+NLbldkBZ3nGo4+mkKTiusrytvSQZMUy761pklSRk6sWyb7IbnUhLR40VsJQKQXdWbzIJahvNSdo7JYu8zc5EYDa1/Si8k1nZtBk8bsnkxSdiFFgntEpUXDGBkTnNkbl6QIfUVX5acn8TKmiVMlmXKQBZPUniINy3G5m3Qmb6HmKIhXkMEUGcp5S1gTI20lN/joAFodq9wVnVSQ7dRb2yTXaiyVzX47/Sw/jM/8rz/JOE7u/vyMKJKWkwe1101IWjx9O7v7hxbbr1jiIqwkk4yuVJjI7d7v6xkkKaQAhqGOo/orMmuVXrJTWvrX0JXfSSX5VLeJx1HSV07RVHiq4S6NiXjqYbftmvERgtWb4XFfyJLXvIip9N5TAKSW2UV/kr6L6ua07wB4a2+SincnzRzXASbxkSuVlsK9ylnAh0Mcz0UGF2ahYBHI+BS4Ek0fxG3R1FM5yUTYuv9AWbpU8v7sMwvltRlTExVjpNEmO93z2ynvr8WGN0UkThvSyJXhG0NytZaknRrZvqRZX6TEsSAxEjCTGn9fQJFju7sc6iGpKJOr5JLpz3lM43eo+c6wtPOYVvskg98zUKAQRCJu0inFiVySo8y3lAvcb/k4xdcRcLLcyFpOOOjLh/avs6QPUqfMLV4z7OCGoSQMmyxUkTkgm+E5KXuj6Utych0CMIn2Rq7humFuXu2qpM/cVP8KIj69GPMaWJq8p26tbPgNErHDN7/dnI5VvwGou9AtEupJgLRX+tSemlTFqOjscZptHmZphdR+i7LJSFhjEvrDCtrNTR8JszJRnLQvZYDEjlJNZ3HQe+TQj0nMmaYrstJg+qSurqYzJ/JAkhyeL4GSnGl0WShauJ7f1EaG0UT7bxmYDXSJTaR3H7QhXCammi/1/i+E3ySWyqvIcHNbTqOHmSYX0UaazCoCqDRI87ZCUQS8c/sUpxJoWqxfN+SF68QiRke7BTM9w+CqeF0lfdxlVtQBiiUxRbqxcn2K75bkV4Lhg7rNan3qP84SW++35J7SxH7GyRKIK1CeL0mgNXko0Rx3aB53SQgWK0ipOSMFDs1zkqCZu3qA3iZDc05rh0s6P51ecIAzvM3s+JouWZrv05Bcz00GGqzCSSvi0dOUg/SWqoOktyOzZv1T/dQe8GLixDzwBVnzAdzYpomrX9yzMb5ZWq7LcbnuQex/RFgkvJnv20cjpAZvMjjCoUsTQUiGsQYn7vj9p60FM6uUt3rJfHZCf7KXY0SLTVeKzJBzf2wTuwRJNG5FTLwwIcwjtyDHpOA0SeW0Q/Y09BCctktdQDSLyk7gqRnS3VLSE5hh4wgpMVjQt3lnpICh/xSnxpDeyoy0eel242Uh24xMs8kcLJfTqRmb+Mw0tJE606k4qZGW52kS+jz2SRo0Y1+QZObgPIJP/hEBbee3D9MBgCTcny91N7bjLBlI0/HCJEkhrEvs7C/oO05IglqqlZEvSLgMpZlXbaCv5cr0pokz80u6rNKd15fdcInkz5dZEMbdh/bPl378NfynOf89tv/+74T5dQ3S+9CfXpsz/DvCQV/plcORMDhGTja9dW0v476QQRTxJNNAh7pND1VOFkuht8qQJDsyceX0eyhvu90PgCzGj31BhAfAml3lc3U8P+jbkpkdnHdJDTJGH6j5PqXJXFdKdHmb3oRQlqfp/jpkACwui1nRaaCrNoMhjRyjSSl2QOToM6m4WZIWT9rCAtePRLk1kg7FoAfX1PsFIZqTroMo7pOCmHpsSBGa5IJDU59OsUpf0ZfT03PU1Oe+qxMTCGNknajMmjW7pk31MkkeU7TWCYC6XVo7jDw0SYHYwbEg4hOYjEnJzPcuuUGC5bLac50a2+c2Zb6kHJXZds2+HdKIeEMGY9Ey3dDsL0l+jqYTyDIj218WFJn7Q6iGxl1zOMUf7KFsOkjnW1cAY9sPL49xkLgig4Ro031AFVfFX/F0ZCHFRzVdaz4PKBbUSYtkblGTxHoyiChHYS/xzsncJpkHEtfYo8PzIgGGgAZe5ahTtBvp5oiRoTn89seHdtd3Pz78/UucZ0aOOUPAthTj+bWNi2mQLpQ0VY1UKCzoWDFRdDXqzDzitXSxiVCRiWohGirDH+f33JE5a6t3CA3NoX1p+0ucq0An++QWNk72vY5qfzC+AyuyVwOFSFNXCJ0IkqOzY3KRtSSj7HNbCqDElEXboPJgZhegUrTkFbPMsd3tk8AhQ+cyZxhXItbcrdwNjbV/L1wrSZthHhYslOvA40OTvHcrt58duGQdFF3j9AZm5mDGvaPNtDdwnZ8vSeEYQ6oduaVFMAmJfMnZ9vOlHZrz+5chqQHPSJEsd8qBtjG7Nej+koUWUDw60myQ433DZcZs6DLRuYHNCw7S1TSi0scEuJnyya8rtuobNdnm3O4vsWOTlAgyk33uDwkTZGSY4peau4fmfOq7cxpenz/WMrzDQktSgL9g6JdDElaR98dRCZw09JT+6OCPdYY5u+OlpG9OSs2F2bzTZXRQmfYtvQGGtB5kds84pDooaS/PjH68xLeAlfRaLcaG0VBjpUXRvtTMkQ1wEuNitgjFdDFRch1JuCo4zvxdxvrWpJdB3B/GB1CGxIiZuzeBhvOxHuL6eRUZ1ZNh/m3MaOlrjFbjyYY0fsTQHlv6jGy73eNrd47sl4pkkCwHKD4ZSW0jNznjW/thVlpb0GGMdAXMoY/D2yr6ZqZ1y2Xfj+nFoIIMwqK7dP75EhfxoaNJSRiX5pzMDu1vor2hw+WQOnjobCR6veLiI4IMOyKn5FwfEx2V5E7klJzr4+kwO4hI71lmVs71W3KEl9d3Bd1VwBtgLV4ZdH++LYBK7ICkypyHkl7Qc7+t51ynqiAna2SSnP28w/D4WDS5n7Wfd20avcQE6cnN8IrzLqnwK+n7D9JYlalgRR58tICSvs+XPIQRyqyCFxnORuvzCChJbiEnPwyTFDIAXGodoIvnr4ZanndDoj0Yuiw8eRpZKBGFlWQBLkYzBARzGaI9bK4kqKkLeWUmAHr344M3Vr/uPgxd8/EMaZYRfLrKb368aT0p+gTOwUkuipf0xqQpbKZPKvoI946wlYyE+0V824vEZE/f27IGJ1bY6Srdq8qihXceh6ZO1v3K5MhvMzlew3r3K7iDOq3bSxYNoTV4C/St2Y2ws2deMXVN/rf5yWcQ3y3ApS1FK1P5sYlLgRZXfuVJ57qlhx+bp3e/WqhoyAqSbmidzoFsP7SnZt8mlyFeJVtMCtxNXfTw3v348FP9Vs93LCtI6xatKgLwT4kMVZCHS27Qu77bJ7fqGrqaMc2J5tGOnAzgyUCJxUuysl0wl2aYWvNh7E9x8G5JX6Wx6rw4Ny/HJetzSYdskZL4uTkk9dQkfQ/e6uWjFlpiNyAT4jNnOcJJhQOyIOMNwoEFGM9XRTOO3AijHMiKvIMgrRFxg+Hi3BwhNDAiFE3LpWWMICdqNV1ykcv9JVL91ccxxa2Heuc6Nb9LuSQrDM5Mdv4cN3dMA+SfJ8F9BV32P0MFQ7tcFpWumZaZ2DRoUtKUnqHw4S0Nv70/Aw0zH3bNVWWGfb87bx2Tx6CIy7kZHnd999y+XIZm/77pXuCG53lsbEFq9blTIE5souMBooKDBKhZyiQ5r5mlfq33af2VL6jnfH5Ni67Qs5Pryyw47/6spPNrfzkkZk06Lv6as+Yu+II0t/TCMEVGkmfouN03T3EAhqTv5Vpn/BZckpdxf63hc3tsk7gQTVeUSopiTcyQplYLP4kCVDQjUMsoPHdM62ESOC+Hse6a/nJOyihIWt7JWMHa5HgQZBI+bS6H5Jc4WLCko0bIK8szZJoEO5ekyz6j3ac13hjts8twliOUZomD7ukLJWkwi2Xir+8fuuvi6nN/bPCinmiS6Hw8eqaThGhJa9CZzlyGmKTosnxpxVra7ItA0ywF0nRCS2tQdTxiCHTcGcEQcsCbXZKcy2ira8ykMyQHUJ9jAVOSdQRukPcdvDQDkL6I94YdamHGSgQnQ19W70w5n5omuRSRDIbNCEanJjm/yfJAuek6tHEAG32yreb3I7CEiul0PLNOGgBuSSRnxdWe+/9au7YdxY0t+i88JH2kCLBpbifdkw/JRKMC3LgGYxu7DE1L+feoDAb2Lq9d2MnTaEaj5aKu+7rWnS/cE3OwcNYAa3yaday4VNHDfr4PrA/si2PpBXBihRk40AsrCB+i24PXJwNWh8I4/ec9ci6HShW8KqRHAqhYv9/jxltt4mpVk/NVjBlqAQPvwgYk4Hqo99uqqNHHu+k+m8+GuSPq3EPXEX8mOOTFVxq7n4HHQDLA4GfWRXQy4zn/TAijBz1+ShRWJs9afgrO9wg3KPyMrk6n5Tznn1nC+BgulMYf+Rlls48o4B+ZYde4x6IkU/VRlGNnwsb4Wu6xLOmm2JfFgX9ljp/MHotyMj8P0eHT+QiOm2GLHn/kS5nJ4ewuSo/sKfzI5+enyQvjbC98ueD31tRNUZxLuXMtW2lUulEJ57YPoL0nvA81FC3mCCERl48CrTSWwo5FOGEPBfXDIR5TU/ImZ/EaGxYmm2MWa7+lYqI909qcwPcZH6AahblL3YtorzBvI6q4DR9XcTyUpg9mPUQMWx9kMl51NHlMRT1pehCwl++2yobX+U6gaJo0RtJdM/dEvBEGcyi7H+Qsp2vfI35msoLxBC5hcl+6m3hZRhDA1kjBOGtJ5Hav5i4NL6IIcOL9elKvvsCAOsyATKXppJdsp3oMnH4L23oiEG3lwskobJlYEF7T8Ir5OvwxRAtIdbvgjxPXKTeKzpLA4CNtmyzdfltlyeZtdPkLmXhIuiEhVmtHETgYw+C79EZeoBgLU3eymRsQj7N15yYpzZkGFF8xYaGXULmsVo4WcI9sQLW6SMyzMwON1wWeqGpVRvThX+D0u/S7TKGcFGkgcCEJv47GW16xP8ZFsPGhrrbbqGxh+cMKyoJLeQGzarr2wVxn+zyJ2rAfiB3ucJ5XGGK/fB9Yk8+Gy7gGCr7l+vyIl+9OmjqYYIpA7yd4qLR7c3vJKGoCyKgq7ao9P3mYM0VC2auiJXM7xylx4dBYMNbEgbOu2G2rckv9SXNn+JISDknxwavpcQWN8LNMubPdD1TRCBonGOicGpaZCHoQERiHPiKE7UIeFDrFOIHnJbgxisUdMGeOhEGtCmgVc8VRoMYnfWrHPGkcXYBPjVG8izGYYH4ubOUZVWy0ba2klji0ErAlblSxZarzYQ9VOKNKKr85xq+ev8rEKFNWe3JVTXHnLrwzjaqYjGkwhq1duKLCRGodc5zOChBWCi7Vh4radbBEVNhDDRAreJGJAdqR0jLjhRkPTvPkejhmndKfF1Qu5YZLhDxALxtl2KPVQ27+gjVcqfXuxAJQQQALCb14rFQ1xJveswhDk1l6Ujau7lmPK9pXVGQtrdfYHXka8IcjBxMEMDjpg2V7BGprSDgF0+nDxOPjG3EdLEvgWTDoK1FRK8qZ1XQPIsFXn7ArIfJoq85zxcdg6Mn+oOHbiEQEAmjQCNP8adqUejBhgYTkSjF1D0LWGUxqW3UvRbUgleOzd/ePTayYGC4ezIysIkBjRXeiuAuPRrEOeq+8IKJ7vP6/JwTRTMw4ap46NHTUVCLxOtbFcwfq3yoocx0x3u7SzER7GbJwIn2zpmmRHo73cSffEc/zl6qZOCI35RxLcgj7nPJ5vcJX3Z8fsSKMEbUSprBB8xZJ9dJRmzhiQi+ew8N3i/BSxxEtLcQBUQGDqeb5HhhU9vTatifbv5ixCcF0yYDaQYhvmDir6C3cPQZg4iLiBeXdBeBMXGTVllYp4WIe7A9dYDImbgkLUKSlLrITb2XqTk/BNZqDMaY+EEHYT1riseDJ4VWNwRgqe9xuT3wBWrS6Z4mVk8K5lqGM2rMUGY6aCkgmYeWSYqLiHlLAwakak44M108vvGiExwDWwD/x2C7pD/i376vXomhtH217V2+vGV6mbBtxGd8ZViBFI4ZxQJPtorQlxrnA2ubkTRYwWQIex4JlIMal79kF3goDnhv2vZrAIsEBbLd/D1K83kY7fWIf5HpNpwIqFLjPmgd2+Lai7UCYo0j62VmSbbk25gwnE/Al3sLJ/1BeeTMBHMdZNGoywwSMcFgT2xg270UjSSH0gLwsZtY/dFtrQ5iVbZYTr6YFtIKCLWr3cJiCRdXAsZigGBIUTbQ74L1rLE1y2zRWDmNVHFWxGUabaqTSNLN1RSSuAyN/+LDfP0hb60W5ld8Esb4ase6BZ+HEHlkGC5VnnNHtITswmD3H/HBD4uXEWPfaPyoW8YNdPhKUVqnDkRsEsDRPhGJ50Id+scH82WnSSSttPeR9lAZEA9xCmpIZC9jeKc5cSQrLyeHLk0luPyNWDsIR8O3rafdI7lXllCZBTwSf9hOxGOeYE90J+eDpPNPNMsNkOF5hXXPO7fNI++dmuCpBGpSTXcOdb3jWK3JdLGGOEztKlabXKjRJoAFKJe9eMXE6PIpV8u0t0d+ctAJusYJIe0VLyrBiAFwbi3F/3HJFQ18z7PNhxJrL2NQyIPR6wBR6Aph25AEDfLfDvVyl2hFAxi28zdHAM5/qD377LbCaF95NTuZxDjPl2EeoUs0yVDDh7I9LVWmidxE99K9YpMhbYlilaWSV31g1yRST0QlQWbGJeIEqrjDCOGWVWzoALuQjqJxgn6QiZ1AgW+PPE2N7EDZvvlEOrWzYQ0+HsXaFkBWeRv2dkeP7tUhYqQ+85ptHuXmk8fyWNVPD6BStRirXo+Y//MhWVv7vh0MoOMXxBnwQS66yjjsp/eZBVbKqTG+XP0+B4Blme3aKy1S4JUernUU/222i83L6SCO2pemWp31D+a2WkANARqO+EQ7UCKvNyqUwtyHJl9wP7d1GFOaQF2rLTtwV+Zagaj97TbCPJxxuA3OTYDAnUxlHnCkI4YsvXCvG7WeC3UPwljuG5HXG0iTQIzkuyKJi6g+4MY4q0bQLCtZ6QJOlxuAedwjLH0gBHMBjvlsII3R4jWoUFgSA1NESTKrLmBt24s5uh6E+Nlxsxpz9dFH1UVlnnhGhho/icdNOxVMNnhOx6B4bsFCOCYMZWoV9VnCZlwlsYHpez+fCSEiWF8pxO9lPeNVceQ6/GMdW99KQCxA9W54AH8qP3OoM4Dt+jApb1N6SbejeKGYp1+nmwWVkEgYnAIQCV9Kvonc+dIPxj6HcjUtYX0djLe1Q7JTiajMMsYlIKCWEkozX4ZB9CyF/ZVlL6LFAG6CGoS/KBFYn4HdNWwoqGtfBKVRhpsuqldptBh9rPxg70N2d1wsQ9Tdh94OIYkczWiXZarRXpYmKUa5MPNzqjz8KdXrnEdApDm1A4/OYrdXKBoiZzQTbEvErcGIPAHY84RKcVEkCGlN4oeBS7BMrQemuSc2YZpdYFFkMwwLobU41yHCAWJjqaJUz726Ko5iNnb18HC2AdSi38E4QVkBv45um3DpL11FuLq+cyjXdJXPStfUcRS7Ft3W5H7WYFJcJnTzy+t+dhifA7wRvq7MlrVFrRmQfTB6m5WFHP4FN9Sowia+fhu4CxzJ0MDyB76sLjqPs0b0v8QLE1FP6jIe1pGJmOjw3vLIVOhgkpdIOFTEBDHQfwEfzFPOfhAsweQHJrXRGQGdyM6+wy9UpuGnqH/y1wqdYswcbCzdJIJyqQlZ/giAOodsEpwrwPapZIH6MTTW8XfWGStlMYPwG2kM1xvv3geW2y0lEaYZZVfEsX9Em0zEtg4HmnndgkykbVwhjEdw34dpQtNTzOXGNZhhTPj1LuGDCM9eA8d+08PAZt4PtNJ1k2eCQTHSLpTeUsho32okwbWT00JL1N3ecdMJ7F54pA2uHSncJf00xZaVwIWlWuBHA5RMsKU3Pbgh/GO28aaaMxzI9RdROywMrSGz64HisU77/tYk1eaKW2GvBVhuXvhLDnfcAFj/m/lyC/RLtKPSVAHrKPx9mC09SVlAe5TkutMZ7l5Mxz2GsQgAplMN4EsIwF76ZC+3oxOImKWjdfIazifr9l8T8PsqZ2HUAdxFGU0fNCbh7aI3TvCqMqWEn8Ex7BebQmHVYifGYsoqWaGLiDuIWAixTrWjxN+xlerxxBLD/3WseTqfT8PqvFz45ZdbxH8f3MlU/Kn0ok5/ZL+Y9CJesshfu5f/g2+fdPE0nH+ttxcqjcG0uPswPH6DxLPiMYCjK5AWj33gKzDBP1DkqXn69/Enx0KpCvK8oz6NEM5lQuYC5HafIWHbkoRtzMHfdYWHz12DtlXsdKSL++m2Q6/oHRoP///nX33//A46aSl3mawIA"; \ No newline at end of file +window.searchData = "data:application/octet-stream;base64,H4sIAAAAAAAACry9DZPjuJEo+F/Ksbuzd3oqAiABYuz1C693997G2e989uy9uOjZ6GNJrCpOS6KGoqq77Xj//SIzAVAAmZBUc30RE1NoiszERyKR3/jbw9B/Pj18/+FvD5+6w/bhe1np1cOh2bcP3z/8bhi7za59WD2ch93D9w/dYWyH52bTnh7dT+vXcb97WD1sds3p1J4evn94+J8rD0oUsgywAMIVOL+idy5grR6OzdAexou+MOBdP/Lw5529HUFzHl/74SqK8NovQPJx041XJ/1X8bu/BN3ptR/GW/H5l38JwvHr8ebxuXffhW7b3DCP7qV3IRi78fr2+JV/610oTv152FzHEV57F5LP/bD9uOnPh+tkEL16KzI9oXppD+3QjO0fmsPLuXlp/9hv292f2+Pua0D9fD5sxq4/nB75l7OM5wLdpj+8tcP4x2b4tO0/H37o/9slo5gwLb53K5Juf+yH8f9qN2M//Pth2375t6Hf/2UcusPLAqrM23eO6r/98Mc//OXYbrpm9/vXZjjx40rfvBPRn/7l337oAQaPIbxyK+j2yzg0m3EBovvlTkD/1rx1m/7Aw3Mv3Ax2/9Ru/+/+PJ6f2j/tmq/tsAR69tKt4E9ju/8f/bD9of9z3y/NQvzC7Qt2/Aqk+0P/+113fOqbYbu4ZrO37t5Q4+sfmh/aLz/0/75vXtrclorfvHNZf395Fs7WFH69F2B/GNvDyFDz/KX3g5c3wZfv2PQ/9P/cnLpNfkcmL94+DmBP/wqEve0OLydkUYsjWXjvViTNdhu+JE54+qHnMPEv3zl1U2d/6P/jj7/7Ez936Zt3Ivqh/TL+0AcgPJ7kxXeh+aH/1B4yvP/yrTsROM72Qw8weAzRa3ful7/867/+7z/8H3/699/zmyW8civol3b83W43reGiZBG/cgfo8BFKI8uw43duBb5vxs3r//kfv/vL7/68APbi15sPmc3QHNv/+PMSlwi/3QysbYbN619++PO//u6PS/Aufr4P5P9on1h4/6N9uhNY96k7ttuu4UH6N+4DfCGwsaAv3rkZ+HHXjX9p4TjYtEuUGr9wF1jYjn9p981h7DacgLj8Yl6vl/WkAfXD5jWAda8/4tPbbQM/tIfThW49h/Kr8MayxkG9YKD/qRmafTu2WQSXL70DR7Pd5qDTz7fB1VWlJhPMx1hZXoa9/phXk+lt6ATT/UP7kkNBP3+b7h/aF9f9/yKvDAC6wQxgf97lkNDP32YA+/POD6C8MgDoBmeq6N5ySOjnbzOAbffmB6CvDAC6wa1AM15bBP/GN1oHBO9HUl9bCuoMM5j2yzGHin7+NsNovxz9GERxZRDQD2YEuz67o+nnbzOCXR92tLi2paEfnOHr5wuj5AIa9/u3GQMAD4O4tq2xJ8wojv3nHB76+duM4dh/DkO4trGhH9zGbptDdt/R799oU7fNIQzi6p6GnrDs6fSp3X587nZXeNTla9+KUQUc4eS7ttMv+8WM8K0ZuuawyaK+eOfbjM0jCAO7xgBCjzjBKssDmm/HAZqw/+W1/d+wu39oT69NHs/0yrcZh4MfBnONE/j+MCP6eMOQPn7rMX1MB3WNM3y8MqpxaA6nY3/KYr186duMK2DwA1PX+MLUJ25kV1UreuO/iG83KocgDOoaT3B95vZUc9h2hyxbmF75RnuK4IcBXWMQvj+ZEWWPWP/CtxtNOGTVVf6AfcmM5BqqbzqOMIxrHAF7wnKDLiskuN+/FQ/oJn3y+vbvWHmgP1yYkxYQud+/zSgAeBjFtf2OPWFG8dd26LPD8C98m3Eg9DCQa/uc+sKM5Gnom+2mOWU51+VL32ZEAUMY1bUdP/WJ09Sat7wyRb9/I02teQvHZXlt12NPWI25yfIu9/u30pmbwLuqa7see8JZ8rIHyeHbnSKHcIRUV+147Pnxx3573t2MZh1ez2Pz5lEG6R+6Q9tkRaQIaXj9FyH943k3dv+tbbZ/aXfPvxvBGdz1V9bucuTc57+oU/923u2+/r4/HNrN2GY3Q9SZ2We/qBP/vOs3n27G7d/+RSjnjtpraC+/+EWo/9SfOli6Znd/J5a//UXd+XP7h/+4Gb97+Rch/Ev/PO6bLzfjnN7/RWj/ZeiP/Tl7FEdop/d/GauBCKH/3g/727nNxRe/CPXvh/50+tfDOPTHr3/oT1mZKurBwoe/qCP9ceyy4/cvfCPJFKCH4alroin2hRnJ77bN9YFMqNbu/av4rkzgSzv+5ZoJ5uKdbzONHkEY3jXZOPRo2V19fnlpT+N/b7+MEPP2+35/3LXooF5yWbMv3+od/9x2L69/6fbdrhm68es/fwWnd7MZF2P8+JfvQvfndte+ganz9/1h0x5dAOjv/vTvHEr2g/eh/aEd9v82tD+f28NmKdY28/adIT0/9MduAwD+t6E/H09/+Jff8bE983eXkP3n6qHDwIvv//bw1g4nkHW+f5BrtbYPq4fnrt1tIYeB+rF62PT7fYv2n22/OWPzP91rLn7s4fsP9PZj8bD6UKxkudZF/Z//ufrgP8Yf8IGHMT3BD8XD6oNYSbO2RkUfCoSo1saalViVayX0Sq7kutArtRJrK0wMVkRg5cPqQ7kS9dqWZQRWerBKEDhlEV5dl6tyJde1UatqVa5lKWP4MoKvHlYf9FK31UW34+6uNI0iBqsisOXD6oNZleW60CYCWyK+ci20XdWraq2KamVXcl0puRKFeyBgnjQ8katqXRdmJRQ1YpxlhLOCFSiXkFYOKUw9IC2tRKRaCkIKD4Ra6XUhktmqIhQaUFRLKLRDURu5EnpVrYVaCbMq16WxKwFIjZYrYd0TWazKtdH1SoqVXqsqwaojrOZh9UHKlVLrohYRVpMhAglzVwCxwcB0naAwEYoaUJQrJdaFiems5ulAljAIW8WA6wiwBcDVEmDrAGuYBQAsaup7JVeycgQg9UqubQEUutLrStcxLhtvQdiRsl5aHvoJ+l3RDMFqwDbRtV5Ju1Jrq81KAS1UOA+A34oVdGFdlWKlYBJlaVeqpJeTTZswA9jEapFQ8CfoiVRipVbFurZqVcJfUa7sqlgbBaMu1rUy0DOxlgX2o1gbs1J6pdYCumpWxdpWeqVqmDOrVgrehUksi5VYl4VYQbfXWqxKGES9KmHc2qhVWbpPyso3tG+YlViLsl6VtcNcWvdTVSCUSsAbqwqGUEm7qmAMtrSrCqZTKrWqKgejAqhKVavK+Hdq14UKB6bVShfwk6hXWrifYJsgQu37q31/deWfAOTCmJU2/ic/DRogV3W9MoWbKiN8Q67UutDVyij/pHSjMJXrqtFu3MZDNjUO2Ph5qAvfEL7he1yrlVwLoVY1wC0qs6ornLRau47XMBNVqVe172/t4VoP1wr8BljSuqjEyir/g58H6+fBajeN1vfW1kAoQqysde+IonCDFIVwr4vCd1kUAL1ERliGVhV+1eFbE57VoRVwCN95IURoBRxChfdKN/NCVKGlQyvgEAGH8PMjZMABfaReSRlaKvyK4wAilxXsIxiv9AsgZMAh6/AsjEMVjnaFCuNQYRwq4FBlaFXhWx2eGbf8QgUcKoyjDOMoA45S+vfCLhW4TWFDC9ynOMqwUUUZxkFbFUYZ9qqoAo4q4KjCOCo3joSHxZIHBOt8ENXigYq/eSYG+740jlcqZWDfAycoYXOLdaUM7Vctww4pYSPItZQlkXlVV7huci1g31UVHtbVSiAL0TATFXygYDNWNewPoOXKOkRCA3OqgKto4X/VMrQUHFSwx3UZWkR/9UpooL8aVgv4qntWB3jW4zWFh2cCDjjt1wZ4jlGe6gyMA3GYgMPo0AIcBVCXAalAA14QCAheXfj3ahFaMrRUeK8MzwKOOuCowzjqOrQstZI1j6VBAVKcsMXimiu35qXUcPzINeylEialLGtaYuBqElheBRuT+C0wOCvgYIVBW5BKJLwHpw2eusLShKmVsLDwJXTXwmAsDNWa0KoDFJCjRCo1iVgGhUCtD7JYHgz+hkdovcJDwNYrYhJlRQSspaRBSe3J1ThyRZLDcZaeRi3sTqRRY4ku5LqAwwTpQgPHruHUkQAJDvR1UaiVLGR4Bmsr4RAtYG2NqFeyqEJLh5YJrTq0rIciitAS/lchQ0uFVsAhAg7hRy1FwCECDmF9SwYcEsQkU4mVlAGHDDhkwAECII1XhnFI3M96JWUdfgwoVEABQhK0kpWOJX8BUrpUcnGl4Tdcg6LClTYKhH+xripFK25gYSTKguUKWTdMAIxqrUoBSy/WwExw6YG/CaR+WSHbUbhoRMM1LJ/CTVqKFVBJtS4AtIIJqIAh4SFh8BloBxVI1aoOv1r/bVn4ZyjFUUuuynUh65UslcMryzL8GnCUOvxqwhd1eIazDOSOh4StqpWkQwJWgw4JbAUccAYQFGTM1NKh5XAkKxQrThBx+EFW9ZIigL/BbONkrArUCGDF8PDBM6Fe4Slb6pV2f/Hgt9DAkxg74hvIicQKT3B4RXm9BdcWRGhYf2VLt8jGrPBEVHRgQTdx4ysrSJx0QmBVGKIGrYEYQLQAeUusbaE8UcBBVgJnKKw/lrCFsptCzuX6reA3aSVSjOu5KsOzCmV34ykGjjrEANCAYvx71n9bBnil8u+VAR72iVo6/Fr7VuXHTZQARw5RArXqMMXWQwkjk3jgUkuGXxUuJ2ywMrRCD7QOz8KI6MDFZ4E+8cDFZybgQMZKzwIOE3CYKrS0nz9jPF4TZs0ADlWUK1kHHLUILeTxwq5kjWQBc1cHHLWjs4TeY5VdoM5e60WOZJDeFZ4KKOQbSZyp9sRbrpAStOdHlXaEZyyxIQtMrPYHLbIDDZKTIclOOymkRAICbq5g6UiFAznLSYVhw0MLpQaAAsdzta6lWEmSGuBMsCiZqJW0As9eu4KZ9C0VWqUHgmc5PdO+A9aEZ3V4BjRllVqpoggtj0MV0g1DFQ5HMu+xHQOCgj/AwqoaVP143msvtNoKTwBVGJrfShjSmqsV8kkQlvDEVzDZOKegswlUF0HVwj5XQBe4O8uqdrvJAAc3aLRACrb+GSqCwFCk9e8h/eF7YPPyLbAdgXkfO4dfKDzoqWV9Cw96asFclaVcKSEdDgXrRPBE6bGJKvyqw7cBhwg4hPXfyoBDitCSoaVCqwytKrQCDhlwyIBDhnGgyQXHqwIOFXCogEM5HMnqx8YmAfYgxdhdrFt9UEPI4mPd8luQwnBFicFL1N2Qs4NwI5DToLyHQloNogvOIQlB8AGalRSciVqDpc6EVh1aKLPCTJaFf1aK0JKhpUKrDK0qfIsCFCgvZcBRBhyl9a0q4KgcjmTmYtMZRJx/UNWiBCW97awSZDOzQLjIp9zZakHSh5k0RqxQCLaloDPUwsGHZzRYDAUe0tiqUG8B2dnidgHbjjWuRTKmAe6FnAqtjcipoKUqtAbDJFTlSq9NVa5UVYVnaH4FvagyoVWHX61/pmGKZFEm5vHYkifRkgdGtIWJEU60LIHXAT1oTcPXlXUKUaGIYYMqQLQATF7hkEuDPE+tTblSsFTrCjYqaqvwmtIlGsTVSulqpdc1mPu0Dr+a8GsdfrX0LBlT4lMApU+ZRcVIkl9BoGEUzZNAP8g06xXqZFqtSCkAo5BvCNwhdoXsoaxQLFNrkD+RJUBDERFoZ7oUksQwLUuaqkpXZB6rjXBWAVnTLkRzC5pmahDqKnpdO/UbeopmA4ROkjjwTJJqSu3lW2X8cUet2vcQz/synPcAWaI1DvomEZ7W/qSCUSqDewqOGdJxQTlCoyK1ytCq3HQgRoSi0ACAE2Lq8J71v6IBAJ+hAYBaAUetPN66DF+gHgo6RK3Dryb8WoeW9VBswGGFX2krfa9sGIcN47BVaOnQMtRKSC02KEhQyZVdtMlL5UgNTCBo+K5RHCpLMowbNIzLdVmQJ0ug4las4WRC6Zxs8aj9osFNoRG8WGtwH4BduQJ3ELLxuiJZH9YaZf0CGBS+o0uyNBfS2anKWoLYX6yrGgX/Yq1NBSbdYq1L6/RB5fe1kWCFLdDgQ8bX2ukCwpIRjzpEZroazVveei3Q6A2IBVq9qQVALOwNpG6QguAEKtbQb1O67pBCAZpigXMFEoTA3oPErTxc0C2KdU2KZ7GuUK0j8CTW4+tkhIdnKMyjkB06BFNGNmvYFDQYhfZjtEoISQiArqlhhZspZf1vuHNqOD7QGA3yYVmQzglLhTIeUC+dr/heGZ5VTv8u0RhdoNEJaU+qVYnGaHpm3XBKMkYDZORLCA+7CUMshQqtMrQCDpzDCoxCwoRndWhZ30JjNOJFYzQ9k6GlnPmnxKOPngUc6N6BFStlwIHGaOyzM0abVakK5IZyVYb1LFXAgVojtcrwa8BBxmiAh7SIc6DCXJHWiIJSgQZZON/COMqAowzjKAMOsjOgqAA8DR1ppfEzWYa5QmM0flGF9agCjkqGX8M4qjBX6EKiX7WHXAUcVcBRBRxIwkB0pQ50pcM4wgYH+kCShGPBTa7WoWX84uuAQgcUpnDbHIzd7lcjw7MwDBOmyoRhoFuJfg3DMAGHCWSFziVqBRx1GEYdhlGHqarDktcBRzBZlXXAUYdx2IDDBrKyYXvYMA4bcFiHI2H1sbkV8uI+lHZR5cXfvDMAeb0gXl+TpQdGARu+QFav0MIDHBjIWBJPVmDPKdY18BXoLAjCKJfUTqIA0YDYf1ET+6+tIXelBWckslCQmYxrENernTcR9Cji+uAXRK5f1Y7rK0lcH1RpK50YQly/clwftzeyYughSLzF2koSWwoSUfCQwvgA3EywU3C3gNjtzgToLfYPgaC1BYRAgR3DZ3QmKOnPBDDaFgIFqhLPAkGyCvIxi1ZI7c5UibPjLX80dMf6Bdlx1BrcciT7gDqLI4Mfid+DHY74PQABhUagYCPWxtIBAM4BEkncdzBtTsyATqM+je8Q+4fvHPtXCpm+IDaPLF4gUydsjoHDgU4MHFswjxqULWLbYI+W1v9K7BNYArBPYpPEBIkBIvNzb5T4m/OzCWRtDgqxNmzhN8jMsN+wbMSqPJuCtyp8CxiOYzbYe+IxyJ6Mx2EKt/iOi4Bx1WA/avy6RkgW+27D6FFHqkHhsDgSNCjC3FZ4tFJLhJb/rsKjtZB6VaGfl35FswNoGYUOv5rwax1a0JNKFG40lQjw0eSA34VVqUSAT8cqtnRoBfjAAnDdKxHGIMMYZMAhZWiFMciAQwYcMuCQAYcMY5ABBygSK3QjrSoVYONxCqtRqQBbBdgqwFYBtvK7o0JqqsrQ9zL0vQzwyzA/ZYBfVm7d0brknhmEVfu5LkO/qwC/wr5XYW3hCF1VVYBbhX5XAW4V+l2FOakc7ISvx84VCZb8Si9ri5VzoxkwQWIQi0JNGJz6ANyAJQrN4co5WdCphTZ7RWI7mD40eYxrx2Zr52zBA1SSf9k7xHHwaDxAVwy66sBqRtwS0AiEBjYmct6KSQMEPkcaILaUe0/ie2iORc3Ogm0LIcP0o5WSWihRAFuvkGnBt7A56FfYINSDipzQNbRkaKnQKv0XaBOnZzq0QLYFKwWaxOmR9S3yQWNLeGQmoDABBVp/qVX5jpqAAk3i1Ao4TMCBJnH8og7DqAMO9EFj5+swjDoMow446oCjdjgSKosdRJCI/qGq7SKVaW+AAsM4emSt80ADR4TughGiQv+3cdSEfmcivUo4XzRKz6jp4mFFHmjY2qjfaiBL64GQ3xkduegxK2DF0YAOjtyS9P5CriqLAYSwEOAuWkOIRoWWcWDNFeKgVhlaHltFXm7wP6FlvLSpNh17FSQYuytGmzZuK9aCDDfAxyw5E5CrgqISAstC+FgI+JriuEL4lnGRVEj/EMQzBWuRbUuTxARfuSip2p+WaLdBVkoOOpDKp3Cci9CW2sEmyQaDZlCQkAVFC7iQJKtcdBmpozUZa0CIkU5gMWAJI4kWXJJ0GoBptPQxTCWNCFrovoLgg9KEZ9Y4ZHg2UJia8ZE3FUrcFLrmAuGsj7bRaMSDN3QhwlT5iB6NjosC5MwiBLKB8rc2Br7Q4VmIZQsRVroIOEThoYQIKy2ki5zSIcJK4+kLXRG+61oEFCHASocAK42OfS1WOsRXYVisa4VRhPgqLX2cmJZVeBZQhPgqLQMKGUahaO50mGEdoqt0iK7Cjeh+9VFiOkRXaRUwhNhHrUI8YYiu0iG6SofoKl0GHHQKr3QZYgpDbJUOsVW6DBhKHyOm8RwGL4OuwihCbJWuwkrgeQxkrKswT5UOvwYcVcBRWT9aXYRIxzCKKTBSh1FMoZE64NBhHChrYk9Rn6WWXYr9krEbDSpofNCMhdi70UDgQKHJ1shoBIZQ4ca2LpamwOBaNNmRH1ORZmbreoWCNXgykPNolH3QGAgCjf8J+VVtSWnDd0gTEuSqL7z2BkINjgziBUkBF5bUOKMw7Iy+Qn3OFCUxKiAC0k1ERRIHkIPV7mWyPQMZF0SQlQs4BNjE14rg1MAW2agl6nqEh1idV/Agdk0YjxFseDQqgRo2OAucnQ5CdmmlZLBPC2efxgC4mhivQas0zRFIJ9RxhXMCKMjeBv0tKbah1E7dgPfIQIHvWePglTRqUaF64FrIXgBKpfxMkvBKKyHde5oEeWgp8rDXjghhVYkIsWUwHkzLlSZ/PrhL0IBigeQNRRLDr1V45kekyZ+Pv1Lgo1hpY/0zsp8X0BL+V/LnYwuDkwoIF4bTGJMZ6oADA+joWxNaAUcdxobHDT7DUF3ES155gGJV+LUMrSq0Ag48buhZHaBY98yEdTOFCM9kaKnQKkOrCi0dWsbRrSn8qprCU44RfhxGCP+eCDhEwCH8ehhRhW8DDlLoALKow3thHDLgkGEc0s+VwUMFvyWDCUCWYRwy4JAmtGrfUxlwqIBDBRwqjEOFcagwVyrgUAGHCjhUHVqerkwZcJQBRxlwlAFHGXDg/tD4bcBRBhxlwFGGcVQOR8KaYx+3BMctuKWXWLP3cWPcBup2pIZZHxYFvIrCoVTpYx8ECYGgtVb4U+Vi+PEJ9hh4Mi5uaUgahB1CNg1drnC/wle4XcE2QuGupiJ9DszIZDara7KWQdAZRaPDhiD2aoFEpe8AMVVkdYVyfSFTVmE9b8RnZB21ZLYCZU87NQ23GnL3MrA/ahmHTeMmo5bvi0Zih9hlUqtKZBrUJ40aD8yBwVAVHHLhoRkUuKhl/HtosaCWH6PBMAjQ+k3l+2mq8B4G21X4rHK5J8apotAyoVWHSbf+W5RqqSVCy2ewGArKwlYZWgGHDjh0wKEDDh1wmDByVJXBemxMwGECDhNwmIDDBBwm4EANlFrWtygoq0w3QhyyAMWwPph6cSMoH7KAcRqoEtTkOwSui0wRtjG6BoH4rXtCUgtMHjqTwFWLRpbSBQ+COwelFO23Rl1L2ggQ9otkD04YJHulnRtbOxtxDYIJ0lxtfDYGWHGI1pEJy9pFnwgKD4QdhUF8qCxVlJziVSTon5ShhcopxG6RsaOAYZCbRft9giF0KEQAFGn9uCn0CiRg2jvQK3IxQ18UhbwZchhDIJ52uhQ8q/AYASi0dyByXWNUMUS5k5wNdjWSm/E9nELoM+0Kg3SPugy2rMNL9IwtSrExINLBEV6VKxO6Z+oqtMjyAy0TWnVoYWQhkK4t/DMcELWkh2JVeBZw2Co8CzhswGHr8J7vfF14HDUqhfRMhmfKDahGTyc9q8J7OrRM+LUOLetbIuAgpRDgiYBDqNAKOEQVWjq0fMhTLQIO4XAkSZ5xcIyCuJJaLqoJyue5gUUTRTvwLqEpwKKPhyJ0FWptikJkXDwWhK/heQt2ODIBlJKkcVQSJcW0aW+PgfkgP0/tSR5bhhJMNTr7CBESNp55RvhnBmNjIQmjxji3uoSULrDgQLRVDV5m1ypDqwotHVomtOrQspBTWshVrQr/DHMLVZmmz8YhOlAU70O9HNGufPINGrWAPa1A1KhcUCO4mtADj/wEFSmwcLkn5E3DOE4UMFfoJYFXkNPp0q0BuGoVMUESD0BNpajRyqlspc/sA/JH0xAaBbTjZdq6d1DdAF3ZaOomqmXghkC1DGyQqJaBU5PsRxIDgIDpueAKeIdYKKaiYZcxOQ3/SuH+otoIzBQHhQ4BCkurlbc0KczjcZOCLjQIbiFNDLcxeZzgNBSUR+mDKHD2yA8AJ1pF3mCJpEdQJFrksWUQirNMCcwxpc4qsvnDfNPcQctUboYgXMc9wygKmBLymYElH4Id6Ffwd9EXJXkdwB+ElgLoL/mdoL/k5cb3SCWE93D8MKOkCFKLpkk6RRC+II+OcZ6RQnsfhkHvhMCoYDBW4xOLo0KJir7W6JQE2JrgaJKtaOG1cO9LT6C6JI9phRYZ9wznGMahqwCjKomInG5YOVUJAmxBFnOURjugIoXBtRAuEiQyATDrgxQF/QB5ieDT+QJ5OQYtfjCfhqgDfrV1aHk6qSkAB9k3vV8r39taYbiBhmdVaOnQQrnbilWtKCgYtgTGJxYQcORXFhNCMNqmLimHeVVjZAY9CigwMkPip9oDLv3C1uhSoves/xUnGJ/h1qZn0k1njZNOvwYcVRhGFYZBHmts1eFb659pv93qMMk1WSrw1zBVOuDQAYcOOHSYKh3GocMSmDAOI0Ir4DBhHCbgMAGHCThMGAelewA2t5HrOoyiDjNFdhlY8DpgqAOGOmCoA4Y6YKjDKOowU8gsELINo7BhFDbgsAGHDThswGEDDhtwoFQC1GILP1O2EKElQ0uFlid5W1ShpcOvJrTqANm6SH0rAg7hV9yKgEMEHCLgEFV4FnCIgEPUoeXnysqAQwYcMuCQAQfaFeBvwCD93rDShC8DBhkwhIPRqjBTKmBQAUPY4jZscRu2uFVhFCrgUAFHGUZRBhxlwFEGHGGP28AcbRlwlJ7tWb/HE9kiKfkBcTu2XHS1KZ/kCR5vtGTX5GADq3tFOUmYvQ9uK5eUgtYe8nhhDqfCsGrpInHR1Cu1+xK0avqVpC741VbgQbNpZoeKw4ugqu4Hu2z3UOVlrzGcRKqpu6GXztBWY0Z6tcako9pnCUvk/GBdsBAFgCH9FiPNqVWuzBqCci1Gms+7G3vNVYXdXYyGUpSSWKy1s5zDPkat1HhFEzJmSzKXuixUVTr9EsSd2queLsLSScfI7Sk0QlpvQoEWWsgwLAQdKhgghmolptJT6Bq8R84wEGrI6ALTgpY+gyl36IwBYUaG99CYYcEZTdYr+IKi/MCvTjlk0HJBbEH9BJ0NuRIKHVTmo6ZAF4nObcJJ7mbIxyHlEs4ackDBCUNuH3C+kJoJYT1GUGqVcMpljce8dO/VBUnfpDHRaOigrXGRDcYa6JVF8wq1rG+hOkotEVoytFRolaFVechoXoFxWB1w6IBDBxwm4DABB5pX8FujQivgQPMKtbRbW4sx5sArLMaYU8v6FtrIqSWcFdxijLktk1ouKnbSQzXoDxA2tkTUIYtTrSg42KXbCkVlTUC7RULWLlkEPBrICi0Y45HqC0vR2SBpotwA5yRpFMYFZUNvqbyGdFF5xsdiK9oHBVonKQSvVqEMBLbQvgOmFCr0AO5VEjwBJHmgpY+twy/QRAIR/bQjUNekjEzQocjtaDFEQKwhH5q0AfiUtAFskWcKPkW7FxjAnRtboyfHYbCF64nEuh4QIEqBdwWoyKL0z1CHB/UZlxSiopy3u7AY9UbgSiQ+aFWFdJ+itYlauMVAPyVfPOjBQrgPDIamwWs1Wu1hxiwCxlYAbNGgZ3DaXUiPJVsRNCANB1LOLXlTUIWr/Y/WNSgXAX6zwj+SvqHCbx669dCt9g3jGx62te4zURS+z6Jw4ebQkqGlQqsMrSq0dGiZCWI9NXFD1WjJLvyryFXodxHwCDU9DIhEQCQCImFCqw6tCY0MaOSERgY0ckIjAxoZ0MiARgY05E7BCZLWP1QBjQqTpgIWCpRDU6YKWFTAogIWFbCoMBgXeJ5wmTjKRWF+bFEum5WMO+oVOZ+FdNxFOu5SGbImoQmSjlLrMo1A5CncO1RmRZBJA6zDxHeUcaWJwM9HYbC1KzskXFwRlDMhRuTSwguKEwaWIF36oHVpuhDX5zhS6cvvwLoXtL+FL6Ej3GENrnRXPQZIgeIWhCsAg++jFQM65FiUS0qFPpARA7olqC4Q4CQvY126LHNqUbxzHZhV4FUuKQTfqlzPpB++1Mb1wrmmK+vZGDgoKBwHc6UrB8Nxr4p4lnumpZsFMmzAM8rdwJYjSOelwRw3HDx8UJEhSjgDhHQBN261ROk0XZIP4FNd+lwwMj7jF2h8BulZG4/fIH6FJaJq3yorv8hOFvBmaJiBWjn6qZWbJpIilNPD5boAW1/l37fkYRWeecLoCgpQodJL0olRovCUKQrsPXLloqzCQz19ZKZmPTVtaFLiBTUnXJWnqoLqANHDcmpWU3NCVk3IqglZNSHTEzI9IaOgFWpO2PSETU/YqEoQtiZkekKmJ2RmQmYmZGZCZsIsGocr4TlxwAtcEPFBFGYxdVjVPsrVFb+TVKOQ0vDReQQN6b0VZHMECZ5ikYQrL2FcRSSIrdSU1yKIc1RBSREk0oM2TZI8ihY4GmpRsRrpK0qY0gkfVJ8BuwBSIq43/EIyOLZQ8sQiMLgvAYrCHB58hudvpZwwDgpyqfyIyMdjQ5w0IKNNiM+wVAj49DTWlQGRGVMn8VvacOBK1yRAY10d476loBBomSL4fcogYGjvEsGznD52G8M1K4caycc/RTnZNcFADxltokDhyz1FexvwZGPD7+h2xIcY+EotGb7B5Ev3Zhl+r0JLh5YJrYCmtr5lAxYbsKC1m1oqtAIOG3DYgMMGHDbgIH0qyWdWcfiAAieqEMtVkfBH5SJDfYUEzKFDx1/pCwiEmgloUq+chgoxJnT8KUv2ezyHkIoxwF37qglTSQWJEboYZ4F59ACMquAQRowiqqTTLsE0TJSN31b+iCX3JVVIoNgSPHAU6hFl4cGVyhdmoGgACn9EI4XXIC3Ra0lxe7UvhWAK33Xj4p8r53aEXzFuCwdBrB9yJ0lVQ6FUFL5CgxDoAHRPfW0DIYpyalZTU09NMzXrqWlDU7gyCsnaxx5zuD/mg6Bkv3lh1pDlL40L63N5tRARRjYg796B7FdN8ZDCLbmv5Aa9RklcBsc2pnfQigvrCpOg7RTlewy7JZ+qrwCgQl0NRdHXUClOeRoQPmMbY+bRmgCxQFQpBOCCplRiyq9bZk2pOAi4RGUawFW4rcBQUFEFAhAJkJDA7EHiBBjySIhAPz+WUgBvuMZilxgMhtUGIDHMuEhSd4YTQAFVEKHMGbQuHuKCw+FBdRBdU09NMzXrqWlDk2pzpKkbZeyfLbEosZDLCx6qF3ijGRyltLeVW3Eo/UQhJ1XpYnm0E21hM2P5CswsokJKksoGUYuS38F9SinvcKKAv6jEqH2NBS/gWzIEIgIscwG5VDXWZoBfcfGwhbzYNYW8aIKJrqCCk+XUrKiZzE/sZS0lzc+ila6UvkSc8OWoViQ6YjEqtLyCQwlYLx7mFiv+kk2WdC3Y19L5TklX8i5urJuIfjgo8oE6SO2C8aGwCuUFUtI6JEuWJEFAvGZwxVBIrNAuEjYUrapdVD78RAGwwnla0QvkshFxMSuqTiGxDgd5EKTLYgQTustiBEEDzdiYxYhRSVB7ToTcIkpZxC9QNCxqn46DmWI6zA6ltuM8UTamk2ekK4woMd0A0wypCCcmxuLJSjmOcDqi0g6TJFFWNzokt7vKaO690qN1sbKSKgzR5Kngj1CUG4yZ5oX7gvQR3AWUdgjPKJoCxAnSNFy2OEF2aYfwHgU4wzNKHcQ6u74vLgoXqvQGfxclB+IXlIfkXLR1yDGD6rvKT0UVhuhCcKVLF0OiqDwtUZaRxnQe6i3FXcJvLjYRCISiJeBXZGkwPoOVc6GmE+k0YPqvPaq68j2qw8RZRycKXSruWelpwlKxXqCJApmDpv3rnlFBVqj9Jyj6CeKHBJVkpRcovBNfoPhOasqpqaZmOTWrqakDXDVhozBPatrQLIuAGN2u4JkRopQBQqmmpicEQTXf3Lt6AjZhKyds5YStmsZWTWOrprFV09iqaWzVNLZqwoacmnpWTdiqCZuesOkJm56w6QmbnrDpCZueZlJPY9MTNj1hMxM2M2EzEzYzYTMTNjNhM9PYzDQ2M2EzE7Z6wlZ7XiFEPWGrJ2xkP8Y1rids9YStnsZWT9jqCZt12JLjJXa0lVhNFVw5qlpXNq56WAZPm6VYXRCAkW9TwXhwVDkBDIKFkauAXRhJClRhlyIK5l1gfla4w0IaCs/Bwtu4p1VJ8bzwFbJqTASBr6B0F3rlMXfNBwjj8aF85A5Yj8lbjtvf1VBHnzZ5yF31VNRbIRWQqgUUzvJVY2F/9AjBcpKojKG+wDSw2j/a57FF8qb2dVMgREMg7wSPjaCYgjroviC6k9ZQ+NAcdOfVvoyDQmkabEpUGw0CLBTGtVfOJlU4iREFfZADpJ9MqtIB1UcqFSYY2THIRMQOYYZrOsVd0hIMW7u4Kcp9KND+o/HowxYdfTDfxs+hpkCoEpMR3COaTuvjVnA5Kt91o11H6iKsA/raUYryX1KAxBTGUJXocycQxKDRNVCg+7siRcKjQBZMfl/h8/X83gJOJFCUoI8o6w5bKF2DQVtQHkSFT8upWQWWiQIH6v/OSkkv1NNTFHfBNkphRfCQBAHXlFNTTc3QL4mhC+6pnppmeqGemjY0RTE1hVtUIYWcmmp6YcImJmwkyeNDjApEXUjUUzOMTOKdF2DzQ+8RFmUQUk4jkxMu3DHu6YRLTiPDgAbXrP2MSkqUwKaa5lFNI1MTNjXNo5qwqQmbmrCpCZuqp6YNTcqZQMTltGrlhK2csJUTNjxKgUKokC2WTJLlhKyckJUTsmoaWjUhqyZk1YSsmpBV09CqaWho7EQqJYO4a07YqLJ5hc0Jm5ZhrfSETU8koidsesKmp7HpaWx6wmamsZkJm5nGZiZsZhqbmbDRSYpLYSZsZsJmJmz1hK2esNUTtnrCVk/Y6glbPY2tnjZbPWGrJ2x2wmYnbBMfkRMfkbYMNGsnbBMfkRMfkXbaAOjDxSVUEyNREyNREyNREyNRRTk1Kw9MFXpqmumFemqGsSkxYUNGQp+JCZuYsIkJ28RIlNBTc8ImJmxiwiYnbHIa28RKlJywTaxETaxETaxEybBuSk7Y5IRtYiVKTdgmVqImVqImVqImVqImVqLUhG1iJWpiJaqcsE2sRE2sRE2sRE2shIJtXXPC5nlJIrwlNxhBPA/y5yXhrSQXpbslRmClPNBDqLIjVdQTGI1hyWXqXsTkiDWqHlQUH504UMGTbpcRUMITm0nn4uiiEu86wiKfC4aLELQxfR7HcZQYq4ElOeZ3CpV6/nnsoC0NYQd35Fqa+J6s0sw/j30tZU2fLwa3l/X889iCXdocdjv/PDaCVgV9vhjEUs1v+apik1olMtgrMf88tjhVWHoTggTm9YkrOf86VigqlUOu5p/HJF0RSS9XR67K+efJ/VpVDvuc6KqY6CpNny/f0DUnuiomuipHdNWc6KqY6CokOqxxvTD2OdFVMdFVOaKr5kRXxUSnHdEtXx02JzodE53OEZ2eE52OiU5L+nzRzKnnVKdjqtM5qtNzqtMx1WmiOoj6ms+8nlOdjqlO56hOz6lOJze2OapbvIxOz6lOx1Snc1Sn51SnY6rTRHV6ccfpOdXpmOp0jur0nOp0THUGqAhKbSwgN3OiMzHRmRzRmTnRmZjojCO6xWI1Zk50JiY6kyM6Myc6ExOdKenzxSBnMyc6ExOdyRGdmROdiYnOENEt18wyc6IzyX1/OaIzc6IzMdGZOiO5mDnRmZjoTI7ozJzoTEx0NbG65YrZ9Zzq6pjq6hzV1XOqq2Oqq4nq9KJsUc+pro6prs5RXT2nujqmupqoTi/KFvWc6uqY6uoc1dVzqqtjqqsd1S0esPWc6uqY6uoc1dVzqquTGySBijBHeE509Zzo6pjo6hzR1XOiq2OiswWRvFpidXZOdDYmOpsjOjsnOhsTnXVEt3i62znR2ZjobI7o7JzobEx0lohOLUo2dk50NiY6myM6Oyc6GxOdxYtP4b6mBeRzmrMxzdkczdk5zdmY5ixpEnpRsKEfsUIe1AoXGNS3FukNosl1pTk6tHM6tOkNpI77MZeQzinx4pmDgLSI96gsXGFSzInx4pmDIEnMXyQI+jWFkNwCVyiCUC9DmJPkxTMHAYkS7MYL7IB+TSEkV3oVWHYScgbWRork+zlZXjxz32sag10ew5w0L545CEiceKXaEoQ5dV48cxDoJF5W9+jXFEJyoUlhCcKi8Ey/phASihTEGsUiaxRigSJnd9kSRYplihQLFJneJCkcg1yUxoRYoMj0XkKR45FCLFBkehmgIDYpl3eFWKDI9JI5QZxyuSqaEAs0mV6CJnR2FBpPUHdLAdmUFDrFBF3gDE05NRevdRbpRVR02xQmhCz12leNxOuPXRwJBq8UWCJArvH2CV/7RHlXAnnJ3YVp4CmiFBe6ZNdV9NDua4qYg3R/ukfE3a1UlhdlUULZDHIKY9Az3aMJTvipxgk4+VwgGCWYLVQ6Mb4UxmLNk7oKNU+kg1+6ogjCh2dYu1i3BNyWdHM5xXrhcDGkAUZnMD4UautMpUQo/Rr6gnfm0L1C0pcDsWUVWoaqmrggVZwJChakYjDGl+0QdJOIaxpX0EQoMxWOMTa8UBdTE+9qFHgNjZyeqqlZTs0JWz1hqydsoaaKUPWEzU7YQlkVoeyEzU7YkLoJmJ2w+doqKU0nfFXQuW8XlXoR7vmCHCdyHigqUCgEedYxogFrLaqSwrbxOliMHi8MFfaBsqFUWhCKhfgSxpTAraSrTyEV5ZRirstUqFj6ksAUnVFa7W4EhVr+spDuV6JPsAoRfcJ7VDECwngoNBuvyjK+3LEi6gB7MhUt0ZWrI45FiacCxBfVgX39X6pNCtE45KCGL/CWjrWlMlYEzoZ6xo6oqGl9oWDhLvPAkhpFMTXF1IT0Wbz5Aq9u8c1yeqGamnpqmqlZT80Jm5iwiQmbkFNTTc0Jm5iwiQmbmLCJCZuYsMkJm5ywSblUzFikF5Hh9VqilIuaoAh3keH9r5jd6MnPuqwlmAKqTw2hpZW7bIzqSpWVzy6Kbinz95BRIbSqMK7MLRagpdvQhcCy63SXWIW3q8EzXdBFrgZzYggVhWUS9tLdOVajNxsTkDHuHr6t8R4l/LUu3K8YReWaJVbNcc3KXUomSqmnplm8oCy5oUzgxVwCgjkWL6T24cvgcaEr4GHT4W1lwkVhGldxHK9PtS7vAacUQj+QwgWVk1EYYEgp0vCSxGdQb9Ylf2pfNBzuxqB9DIUAJKUrK1+NDr6lC1MgAUArCtCv8FwgHBB+AvU+DKb5Eg6MGHdNPHV9E0qD4F2jJV6bh2kPJdYTgpBaAeHSoammZjk1q6mpp6aZmvXUtNRMliW5H03g3WKiXM7Wo1+p/k9FN32IUJBQ+bR8KnQCxCF9jUFfBpBCWuHEpdwgt14QPUyp76W6LCSILFjWLvAcKq0QB8YAn6h6oELuSNIA3l4xVQoUvope6erpWZf1AigoGw1bxt9gQdks1Kp9BcSpGiDlr0Fa7VI9PQxqBuGokq7wny3oJl+Mq1R4emG4Bn0gZKjyhxThmyV6Ewu8XQRISmNqsy/HJ8qynJrV1NRT00wA6umpDc2qmJpiasqpOWFzVwZDx9ydwdicsIVChgIvz/TNCZuesOkJm56w6Qmbnsamp7HpCZuesOkJm56wmcWKg8JdnPefq4fu8NYOY7v998O2/fLw/YcPDw+rvz187OiftVnhdnj4/m//c+Wp/+H7vz0IQY+EdH9L97dyf7X7a9zf2v219Fe676Ryf9330n0v3XfSfSfdd6pwf933yn2v3PfKfa8cfuXgKAdHOTilg1O6cZQOXungiTCAMIIwBD8GYBmugVD+5yrMMP4TpryIZlNw0+mH5WAvQlqLS1iYNLEMjMa2DEPGMGRxN4yoF5W6Rh+aWedkfcN6Mus2Xx92okQ05xBCvtxF35WAehHlMoYIBUSfMbNQXs4CA+rl6RIY1Jln+mtYINGaWBaCH2lmZAl9aG59MyBUAqK6H0SZgOCWMAPCVtEaQcx7jlKXYdTFP/7nd6/jeDx9//g4NsPYDOfTuh9eHvfNMHaHx2M/jO1wGtv9vh0u8UEsDoOPJ1xrL/G1h/Xn7lN3bLddgzjhX48/NUP/d638u7r4O6s+d4dPu3b4uO1OY3PYtPGIpWSHXGf6oK724bU7jf3w9WP//PG4fY62QsUOu2JR/uZx1/32N7vut7vuNEZDqLmFF/zC//jjIYJhODYpru+GjXh+hpoTdRUTNcs2eWKKNpbOf39xrH4z9skyE1kU1ylg14ztYfy47YZu87prx4/NbtdvmrHr48kH+YObfX6qCnG5D1668fX8tN70+8d9/9dut2seh7bZNk/drhu/XqIDnYXhnSqDTMYUXN5NwbJIOBbkLjMsmN15sgCr6uVgON6bHYy+mLlm+NK94aI1T6dHoQsoA6ZkxBjh3ox7zxtZgOHq4oytdPaMZWDUfFfrAiu5wzVBExrDH+W5WbUXaI5NF7FpKE1/P0gpLzfI9twM237XNn1RybWj1q5//OkU0QRYN5hTLLOeMmI8oK5fkTQkK7jJQpaXM94N7alths3r+ic80+JdwJ4djIDvZeEg2HtB3AvsIuFUtwrqniPmOFY0sJfuNK4vmMZrc/jSNf2jetaFqsrNs95uqmajbf20saIqhVZPZaubWOao75d8ZLyzMG2XgcHzPtsIta2eCgMhUxdCXckRquL7Qwfr43kXH6r5A3ER0o8/HtJzVbC6YWaGthHrMSyH88cWuzOibcGysP+vtJCgLd5+jF6eoWP/uRm2p20zNqdN1x42LRLmODSH03M/7NshZhWsmsiLFypWejS3fSV7iKkiYseb9aEdH5/73bYdHrdFaWSTkHeZn/VlHLHmhOW3GLJmVSalIxiK54ksC1cJHXL7lD8EovPesGLqe+nPXNLbIv6tigRvyLK9dzXKNl5RqOR6L4+JRJaaFZ0EM/47xdfMfqsSSwsnkSj2fIxkDct9f+tQ+KXTZUK/rA2Fpb5I+gIrYU5QXM0sHTE7W0SQbFNWEePlWaNNbJZQebPEEow6HicrZXLj5AFvn23cOY6Z8Z2LAEDxgtvMTHynbPEpIoya29KSB7FJmDQr3/Js4ePH8esxNiWoC+7yUHrm5CS0yu2Iyq1C5SS7yr1Xufe0e0+797R7T7v3tHvPuPeMe8+494x7z7j3avde7d6r3Xu1e69271n3nnXvWfeede9Zb84Vse03mq/FiRra02szm6qJkh5MeROgSPRkt0k4THw3bzW1p5I5Z3L3h9Q10/t7JfmrJvdgab/DwN6s9/H83y+VNE9PQ/vWofUiEsRq1k4TNnMG6Knfncc2FstYBZYVy5qn0zg0m9guVvKyV2amNpt21w5zIw046+/VTAHY6dRu47lnu1WydoBms+nPh2R4Bc+12PPGAeoOLzETZafcky/LTJvN5jw0m69J33hhL9e389DExAB3Nd0rojSboT983SfagmQNCxlaGLu3OSVAAt/dlLBtkh144X94EGLOAvPAjmOiDkn23OfdKs02pkzwiU8H2Jy9B+ZVOqZo+bXcbr+LbQWQ43//rG3b/VO73XaHl7d2M/bDaewJ4CXDuLAjTva4K4cJC/k7/657nLgTWSriyRGRRGvFyizZtermPIn1n2TndACmFA8Mwh7u37DbbQSF9YPF6sAyqP4p2viStZbyFuYm7k7JerNy/XgDFxFM0Xk3xnNUsFssPswX4T4/d1/a0+PYjbt46hVraeIF2OZ5jB1pJetcnUn9+mpXX5ruELuYIJL07j6+xCJfwSubPNG/tMmhV7BkoVilt3l5GdqXZkxIvmBNc5m56aJZz1sTclpM08Xnk2HtM7x1pYkslpoXm1L7SWQ3zMuNu6d2iFYALgm8+0DevfRDN75GJyBU/szrgst2nyyCRX/Y1+a1739qjs3h8fAyomsumjjWG8v7dgLCbtPsdpHso1mJJbeS0VJCeOSV3ewZjg/sSbWLdIl5kxDnk+Rd8zly8bCmhfj8+fP6pW0/gQ0X/6L/ilyjMUZegslj/Jwcr3CdGzN99jol9TEwrMRz9xm7O742h/O+HbpNZECpWAMKf6jtTn0cTHQtVCdWGZdhju1waMbuLeLRNR8Twy/A/hgd22y8leCVm4jyWBfOTLP3mneqqXsN3bMNr4n7vZKaTW/WuDNkeGh2X09dzNKLd7B0gPPXWAMyLHtiY2Saw+a1jwUE3ovEUwlCicZUsXFKGd38EGkZlo+38dPs/l4JlpReqLxmsfn/3UIzD4HMEM4hPsRZlxTPwA+HfmzGxMrA6qgZC8/h9DkWK/FmirvFrcP4OvTHmPPhrRDvgNTFQHgGxcuQh+h4lrxjNxU39OX6MqA/N1/jDcLvs8wG+fr5tR2iXQ8JeXefFMcmltUMHyXJc6BjNOWKVXhFMk1hu/htwvOVY/ebx9iay2ufmY72p3Hoj6+xWA/1Du8+gI7HXbeZWzYNuwgZ1guwUk3jql58+8l9PMbiJlzGea9Ppjkeh77ZvMZiK6uGZpbgOPRfuv1MetSsrTSW6ReBDhsbeWdKm/fcLQOJdhOkd+Ttm6zPmYuo98JDiCji2erQNrFdglWhcgPqz/E5ylts5A163TA0ERkZNu5qJkalOQXvFqduOR6hn0/n5+f0XOLdpPxBMMFa/+YpgmdZ+siBi3ktu39i0mFAdZtdRLHT2j54tfqSbzjidIDpj3fo0Z9sBkmmE5v+kGpmJa/RZuh17J67TRfbKDDxl2OFvBiQmCrvjp9gsmXCwiSC32QX4S0ap8gJbdnw6cxpfTp1L4eYlXPnRIZ0EEpi9rwt0oEB12+6VJi0rD0i27HzPjUy84kwGRYQ0SLUM5scxwtbIyMnj6lHwrzDjzPGRguViebJ9GRsNq/w6PTYnE7teHo0SpX1VkcBe3D9zN3TDqA/JV3ko3RyXWz3x9QAzupuGYvpCOwkkQ/MNR1QLR8aDIKZ5xdKGLxnyEP3dE7MxLwdLGUzGT3hPCbq+LQiD2pOww6wg+sDQB4iLThjeEdsHzdd4km9cO3NUGbgnF77ITHUTZCqeyDNAmamRXq4LZakOY/9pt8fd+2YxJOwDorcgr+1Q+Kl4B1qGa/TW9/F7JJPYOQX7XPTxS4XVoQOeirn2blit8jMyFPMH98Ri/8kyipe4/xWX4TRbD4dh/7YvCxEYbCCX6ZPzeYThhYnkNh8uQykU6ujoNaKl42iQCEOWkQ4V6JT56YwLqQvjozN6ZPQh113SHLiFH9OsyLRU3OKTT788Rq674eTocjma3vqmsQ3wfuGeTniKeEY18zMQXJOQ1dTTTCSHpcxb5rzKUKvWStFhlzaxM+h2QS7HJDD5nXfDJ/+69g8/RNkiO0TTZkVHlneFWAuet9Om6E5doeX1/PT44Kio/gErnsQjkPz3O2a8Tw0axjV+Npu+80JMozaA3qbTuNj+9bszshT1q/jPna5sZks14Xm0J0TDDg257KzeX2FTheJBqmVmO3sXWBP52M77LrDp3aLS0URLxcLdbqYsti6zAbz81LQUzsmmpziY7J4htWOSewD1DjKmVwnxS8TyvLUjp/bNhZSeRnyIbINcYb/RTxdMgeSpf/MHHSHZoidzuyxmKGIXRtb10s+QyjDVnd9LDUoVmvJDGjXJ0rLpZb/ANUhZ0LyDWcbQI1P2JqlON7DiWCSMDBeMuLJfy+r5JTls375U7bfxsm8fGrmdb7V72KfER+/xY+qj6RWy+qameOxHyNLtOFjmfjtG3EE3mWfSh4z32AiQ98SW/00NJtP7cz/xnryMiQyNN1h/dNp8RzFH386PfqX4k33jkDAp6FvtpsmKSagLjy8D9Z3Na+WPQ3951PClPm0DFaRejrvdvN55AV+fh7PccgS64iPLYCLoGLnISvtB6XsVn9CksvF1s1Z7tSxOSWmmYK1QLIbL5LWNesw5k+QTbPbnHdJxDbWLOMOzutjCzBBLtm2h1NavYDNheSN0QFmbNmReTfMKuOZ9hATuahmpUhe89/Eyo3h1yFNA7yqeGyaw7bbJutTsg7D6ydGAPgPsdOb9zNfBxWvCZuYckvnjuN5SGJn2EA6VkLbNElsdMX36arlb9OcEqXN8nEQLBPaNGML8YapW5kVwnlzrAMVZ2sUrNJ3HRDBiLt1f6THTEGuWe8mH2a6aQ/jEDucLM/6+TUjMAnfqcv7jfEeUhzQZdkdHptvWIiJuVGzPctwbgcnCd+/X63ctFFwYska3jPcuR3GpouYYMXGime2/2sDfoBYDIEKnPdGgwRAM9KuWcmU1x4CtDhKhbfu+oACXlcFkC/tdsGGcX9cwea1jTUvxboyZSSysMDSXBc+R9zbqW+A2+22Q6ydV3zAfGZlh37fneNErIJ3bmY6dD4k+ipbHSFzOACUZLrwJut3AUrOBtbufr1qwqYb57FQeI363R3bJXKq4g/kyNzKAoOggpnYZdgTJ3PM75rzNhaM8nEFy0DaJHiZnaQgU2Z61DaHWPsp2XjxG8QhAJdQV8mHJN8GLxGMWOvmFSgp0UMdcG7ueTa4a5skPU+yweO8GrzZdcenvhmiiVdspEJGc9n1sQxj2JoVsdmBAzZjDaw1ObcD+/P2eZfEw4mC7VqG6e3Op+R41QV73PMSA4H5h0T0eIcMQ4BuSfkBI+XjvukOj7vuCZ+4j7vDy/r1V7s6rjtY5TOpMp1JM1HYQIfcyiOkeHrYrIrr8ZSbPmZzFZ/LV12eDDnLKsC8qOF2PmyhvCdodMn4edUp29/FNX2r4T9cSltutq3ZmGf1/Py80fJZS9GW6llXT63aVsI81Y19VtvH07B5HNqX9svR/YlngiU6XhXrt0m8Mc+6eCbYt4fE18DWBMhNFASNp/mR9xfF2vS7XbuZJ4DxRVF4W+im34NzYmYXYUtOZpSnfr+PfSWVeMd54166BMPWJsiDiYekeK9TVDLhsjZfZikBfBzYLQSrjmXYfb8/Jrxe85G9kQDOg0s2dc0yED/ijP/LQTzNIu3ZozILqoudyZpfWp5zE5hhvdn8aqdqGdfsZHOEcyyCApQSC33GnZjt2y4xr/DZBBnRst8fh/YVrKlxxp/g4yDyRJaGyeFd9XeLXggoFXMKthpuxi7SHzbtMQ7I5k/x1AZ/DWyS1pd3T6U2fgbuUjUHVjnKTeHh0MbRj1awql+uQwAmrVTzjpI3DtKsSND9BYc2/eHUbs5pkqqQLH1ke3XqtjP5TAjFhgDn5urU79r1rn/5bkHz5iuH3ghyHoBf8Wpg5sSaQKaGIsHXH7mpi4d+2De7FKpkDSk5SWiCulRyQ7CpMny9lUuYY5eEN7Eqa+5wBnjgq0ilGpalZzda4nBlDUchDzapWBZ7pxYSb66XgcRegB85nW4+Ij4/ouE8EyBr1vB3ZXYAVsJx83o0AwmMymnaECsfZNRegjQr4cMe5zperhBKcEMa+dLe54bugHGRoGkgfW7OAWfshuMNajkWO7ZfEsc7u0Gu5kQ5cOe0vIbIVBbLwcLQ/rScE+s5uQ3Wopp6/Dr2w+Y1/H0ZmuPr6ZHtg2JTrLPH2Tj0uwiQ5VO1c5P8ltR3UXwGug97u5ZXn2M7dI1SrI5dc6/mRG0C6Ct5ncb+vG8iJV9fSAsTv8jHsziwcMCdji0ksYHLJVH7L8AuVG+7A+x3//D3u/HXx79/GX89vsYlJCR7/GWPVI9l7DEoOz2oK305JbelcDioEEC67T8fxn4mU1SXAXu3xQ0tAv3O/zOWWHhjxJWJ2DfjK8R+fBn7bp+ke6gLZ/xDYMs3dfq4fZ5PgrwITpkyRm6Cl5TZyPKleY2MuOZJBg3Mw9iHDRMrTJeTYe/pPEEd+09totZfCJqT4/4mkF/783h+asd+dqhcRL1PftdrMPtPXWoBvz/ld9P3wxbMW7Huq3k7YmY5jl3MBxVbRjXjcuiPcXwaf+WOJ5QsLGIajEfkgrTlrUt5SlNLiooVCTLHxmlMamzxBbIyUM5xuKvm3eWZZUuqsPIxvDdIOOfDGEfiWLbWTyY46HiO1WP+xjtenhiaz7tYVrasgJvZH0ObBJvVbJG3zLwglHip+LJD/HojmNj7zMqjXljPTVF/Si1e98fcIhSMvTl+3aUA5WVmpRBz1pYDfD6Nce6JZOdMREHOPLR9v22T9P3MTZcssK2sdbUpGvvcJumf+bIoi7CaMcrh1ryDKU32ry5X+DLglmeJgC0tFSEKPhCMn4JmbI59F7MOwzv1WP6TBnNeXF73MC9860tCXM8Z3rawXZLAx5LNR+S1wG2yxnwxgowavG3bSIbnrUAZSmmfm/MuNozyXiiWpW3b5+QIK/kA3cysAJSkfMv9kXJL4dD8rSxXIzq27Tiz+Upe0M7M0Tj3H1q+umoW0LBP5rtmKyzwR8i2fWt3/XGf2jVEwRZJzWxeX/U+mifWqxbn6HIAk1soeUWPZ/nbDic9yQQzfAYOz+c6KIoDNy6lRaF5nxXPohywxBLELmKuV90m2cJC8CYl1vu17eKIP/76zdxk7+OLhfl661kgMgHyrp4AG0gi4Ph4pavl2ALApJ4wu++uRy9dgEz4lebDSzMU5aDFWhdbjOT6vWjhRs7krGKDcjNnVXfa9G+Jnblk72DMQzru4qpcFc/dWX1g251O3b7bNfEVjmziY27e5/flav4Sy+gWuBy8q9emtm/t4fQ6tt2BubOXLzKb40snMsDOS0rkywBlLfbb7i3SMC6Eg4dqbgXLuJm23Vtan4jd1DnKTh389ztet91blzIYwd/4mulMlBtg+XQVnpj7uH4yG0/nxfucNA/ZwKk/6B1CSr+JPdvsxGTkk35z4Tx4a3bb9du2aag0Nvz4CCzlrWs/PzZPfZzNqPnq1rwI4x9c9vvKXZkXCWZXI8b9gzios+ZFwKuQYtcGm1EYu7fyOzVWjyu+RGVSNi5HChcF531ywfql71927ak/D+4GS/8LRiP+r4+vbbN9HF+7YfsRCrZ+fXyCVMfHoYUoynZ43PRD+5j2tr7/qsptv0/Saup3XF1IUOKFtWyIQ3auIG8Z5uO5ees2/WHdbSL+IFn1LGNbQKjpvQ73Z7Nt+/PTLrFcvWeuPh92fZNkZ90fkrb9+XP52X5++bL5OTpc2DM8c6oM/TFhIEKKSy9FMbf051g6wft4HJKyD5Ktf5kBdk4Dcio2aMB7ODLixXnoo8O45IP3+C59PTT7pGg/myfMU0JSa+gdVx+16zhzg+XW91/r2Calf0ve85BcNzFz+aYl0ePQk9tqvLbNqYvN+0bdL6y2zSmCofh7MMXlYBZhbWM3Yc0W9c5QwDau51bxmU8sBwcYfVLr5v541Pjq9ceXxF+g2MEJ3oTRPkNx10Si0Gyy5fVI4xauHGqT44qVXXmjQduNr4kjg3f0XQ+UandtKjcpNrySu5Diej6FQxOfY2zQn3f+poLKLXh23TG5pkIINlA2w0L2v+3GZtdtfvPYxsYVPi4qA+wpcffw18TyKwVAPp6SXGvBu3wys4Te8bRwECtU8Ixtyct+4f98EMU8RGCqLsXxXB/+V15d7RAWE1tgrtlNZphiZs6ici57MGLEW1AVl46teQxORn5p98ddHyfis1lwGe6yP8ZmqIqvl8Way9tDk8iIhndL8jMFUNKMCjbVJjOkA6QixZFUfJV7npEDmFldwbtNBu0s9UsI1lKUYSuHGbkq/pK1zBxv+83QHfpd/xLTDn9Dd6ZPL4lHQvPy0tV7AAlavCFZ1hLAJYp4DvwpKYEiBLvfc+swdmNSbkTyd3REkicDb0hCVYR6h8ujPaYFBO83wrc/n+fZ7YrfyTzND0MsnEn+vuHk8uj0mrZYjl5Edto0x8RVx0cz8DwsMSXlqwa+68rAdozrSrFG9WAw5kGdh/7XoohuA5Fs5nJm1G/tYVyPUDVjXMPx9NZt47oliq0qlTma3lKRjSfHDJS4wgjrccuIvF+afepdrvj6svwsfWkg2yxmHnyMS7Y/x+SSU8O73jNwIPdqftv4/WHOAGmIs8N4rYcPkgAwcchOyVe54/lPnIQs1GXgbHVbHfT2yzH1FbBGrwwn/HJMU8d42YpXL78c0xByXsLMzO1x16RULNiE34wk4gHFN1A62RTtj5+bcfP6X9/+qTkOP/1Udx/11/Yf0yifko+eyrC+L8f+AGfnQt1yVi/Krk+fRstr3g7Eq0YEJ2gDBCqyLk/cYpIVr5IgXCOdbs+StwHcfF1C+2V2o4O80FGnyIpZdMq8/iIf1uGwpNckqChf4LY4dg+KMmnSoHAVXU8+v+7hNoizJL6Sl/avRv7MwcsY9MX9FPK25AYHMgly4gWMtD6mvXG9nPMgjlm66K6Yh8Fdh/bdP8wTeWIFlhU6rvV3VoHnatHJa/siYS2Kj4NgapFez3t2mBLxllV7lpPQsoAXwipZZ+G1bsZqCn93AXN5ws3TcWrbT2N6sWV9mfKh7uIXAd53UJ0+dXWzPoOrBIIwIZLuZejPx9NuG4sKl66Ei9Ms3+VnXLWkHEfeg7oMpouz1io+cMlTKys6Pze73VN625Hgs8PZeXtudqc0Hu/+wKznZt+fT7Eno+YTTlm59zmN3Lk/u2SRSbIhSSzdOzBJDD1rj+HhtE2SW3B/DdTntkmruwqZN1SlttMM2Ni9zV9zxdrRntv45GPD3HjJ9RkCMFP5934b2nM7xu69mneA+CThzLDGzet352H3j/+4ThOxSjYK4Po58Nx+jgfKRmN400jGSfPctbskV4kVO65m5TwnJWWE4svw8Kyg27W/WqhnoHj3dq5Du4QsJLui2S7tknQT/g6PHJSkBJzlq7XwexmhpEZwvghxZm6SoNWSj5PJjOmQJplXfDkunqS75H5WnggTr3rmKOgOcYneij8MMh0bkpITLPU8RDpUetctH2H9HPu6NcuYrzuCn7sv6eWT9xt8nncN/jsSMPlUNP4c7Xe7PuZUBVupipcfCUzqIGHdrt6/m+HxfZ9sw5KNQswQft+Phz7JkeNLaF5PbHjuk2P+yvEcSmV4B2P20tqMS9Rz9fSKYi9CJhe8hoBGH7Yyv5r4jtsYnqEaTnKJRn6D8YwRQaUpOXzNmltWBACmPmg+8zXbtfMu0STYyOn8dH1OcoszlzfyUJLrsBVblitczeGpw1OLd7rw22xIstkKPrmG5yFD+/O5PWzS6v38RRa5yXPA4nAp/uS8Lu4QwCS/umaDFnOQYpuJ4K969tstVcjTbZ9eeMEVPvL3pYbS6fx+OO9i2xxLwEXSt6iuDgc68XCyqlJGwAIoy9XYZHFpAy0W7o3NgT3MDEd8jopnz2nBKc9Go42Ti0DxaGdpQHy1QN5T5oEll7hci13M9W5Ig8VY8ZHnRC/toR3SO3Ay9awTmmaFBg83JgI+RUncCnDXHF7OzUuL6d1De4ypVl3GJ91mG/KAE4/6e2cyTSTlr2xjeZGHlOTC8AnNGafOS9vv23GIrX6GT8xiheSX2Pku2VBOEUUJMKCa3W45vste6C6OZd6wgpN7aJb1by/rwqjbvAEvbWKV5QsHeFmM3aYA67VJro6O3DTixlI7Ly1Wqtm1h5f4yrmSv8CI71b39JRWE3vH9fYv3Vub3K3Ji4/F1bnq3ma19Vl1L5Ms97Lrn2LN2vD3bl2Bsvv6m8dYbixY9pgh+T4d2Hs4DKbmxLa++ysCvsShBO8oIjePwebZeqYbZ+6uwJfj+afTI72QyBD3iyQvQ7PtZilZ1y5HzcKLBMWaT+rjGfzQ7OOwEDZkOAvksIVy2UnFRV6kYG0sF6ASe839JcuxYGBkTuFLjUcS8jKwLjUp31+e9mXoo0Qkdq5vEELOu+ZTnKYj+VM5URCCJuf4YFAYvGDK2QEY/X8WfhcqtbP9f42rALC5mCLSZZYh/RYyAdvhN48JUF4IZVfoVcUxDGxoAA9BxwPL9yE7sGb3HO8BlnzZPfDaHLZJCJlg7amzYnhXI0wQ/CxgmY0s5CMUX+MbCiyfKBTpTsug3pLgcpYNRWavRVhtnITI0gN/RBFtxkbx+/kiQfnxx8OPPx7S4paCr4jPLxzCi8HwYQmeLq6ayQDsjBzYu14zdEVwmPHyuTFXISYm2ltDHLJw35KsO8s6uvjjBcB8/dx2L6/jz+c2KWb3jhsTXxFUPFjWTJGeDqwc+tp2QzNsXuNKJKwQykfSvbbdKS0hwEe2ZvqzOybme74WGM9n2/PQncYuLkdQ8bdBZnbpl2bbbrp9LPJLXnPgQXXbbazPlHyEBz+07iWWgNh7dVNXAC92Asz2lEjutwUrLoI7nGLHEBs04M2doUarlz74rh5On3fdU0yt+UJ3i2D6ofsrVC+Pi/gJNtsowy765H5Ww3vT+FMpdaXxF8nwW2dIxnJ/csvr0D7/048PXm162vUv6+bYPX9F1Snh2QUfmMCfJjECV4ysHU6uNATdUEYByY/d89Ds24/Nsfs4tK4K148Pv3U/xx4OlhNmpivqyunQfwaN/DS2e6w10uzgXuHxdX96xBjh4RF+2rcDXi7648Nv6WnUDTZ1jk/ISroBAdl7qPkD5X6muj/Nsfu+P7aHUwvM+seH33o4aBNMjQiCLynG9yONoZ1sSAu1erz44F0BTO3lq1qKD0bivJpeNIyicbKH9zgev3983PWbZvfan0ZwfhWP//U87P4pVFaiJAyY3JieWWdihp6z1Zq2zVu3/fja7Z6SNICKv4CH56pzW8a+/2u32zWPx+3z+qfT49DuZoUqJVtUWLD+zAVMh58iq0zFB9ZenarL+wCgejFINY/HZji1w+M4tC1dRngaNvGE3Z+UuoAQts+Xw0v4e+0CgoKt3JFhww7t6/nlpTu8PDdY6oZKFzXHLnFZ8AayzE6dWMXhK1zjcsLByUKWj0X9KOvHpzNUlz6dHsd216ZGpZKvXscfu1fyRYbz095+/vq5fYsdnSVbVifjyb2YudiuxgrhPA2c901yNx2781ieEpuJFJ95420mV+uxdNvH2f2/JX9hKLss3faffnygpPIfH377m8dZyTX2PGLJt9tCls5zXEmVv3P87gorHn6iU1r+UvsMqOeE2PiCupmlSCK372c03XPMcW+LEro4DdOiFd4Wd81mt5gim7XRkUgVi05sOC5PIy+HfmiSIDI+uYA1pCCclBBYmwUfNDm7vELz8bdXA/YQWGJGubfcSA56clcSqxpxkR/XAr1uDOxaCOjKbBIQmPbzksF8LAxPgXuQmxMXD2+DY8UJgvPdjw/rx3mBd6H4kP7M5kCQKV2zAcVpvEJ+/mbpioKPAeT5PcKJF4HNdbsG5q2FvBUEAwFKUAI0sfPZS0fybe7ybn8c+jS2IHPzLs9jCFAc7sd7kXk6iSMmbog+vFBn/L+Z6kXhuqdre/Kas2Uxami+NbPFBbrDZndOy57wnmn+NCM4SWb5/eUqCc7s1u+rlvurKl53WCrIz9cS5LfBAWSRWV4Jm96U6dE2uYnWsoSatXhlZUYAnRTa5uuXZAf9JSm1zbpmsmC6TZMqTCVreLhuNUSIbZqHcX/qfnd4TqwyvL7j92Vm0p3dKQmW4v1tmf3pQD1u27Hpdi3WOG32UNj/9Cu4+WSOh429yaiHiCe9kpGvFOQLpOX67e5Aj42lio+Gz/UNo66TODa+oMBVp3kyUP7GwFynurFLDMEFW4GHtwU5OEmZNcuaYXmttTvs0suhBF8OP8OWjnF5UzYRIk0K9AfX9TBWxBE7ellpOSPA4xXEiQR3ra8Zik3kS15EygiDh7F9Sf2pkq2+mZuhEWoLvsx2t8oECmW7NUvstmysdu54HtvhkJT5L9hMgbgsEwvwOLTjvMIHn9uXH2lUh4jnuZ4gUqPyrakxnsh9eNayFLbYxwFsrm+JylDxdZ34LZ8Q2rWdGjTPIhksI5IGG0IqgqY2BF4E5ffbaZZyYtmDO8MEYg+k4l35PCuPyZm/KzINi7nif8jzxRtnCYuCxnaF/P3Wy1CSoqKsPfN6qhzAiktR8cmJ9Q3AKKw8vZP4/rSBLtFwM0byS2JmQLVxyJVlLS4ZyoyPdL5mNU+ZPzVDH8t2mYlh+c1PzVtz2gzdMWHbfBlur02xx9NP3SFxHrITxC9+HEpb8QJ3xJ2WISUpDmyoEb/oP533x5l5+f6Am5/OMUMyfGl/Vn+ICnBo3ozOzscnuJ43imWmJ4nzUrFCF8+QPiVXyZV8LG2UdcbB2nb7ZN/y1ZNZcvzUxtl27CWG17OEPrVfj69Dk5QvKdgg3xsgJdkk9weFfWq/fu6TDE9WpsyAOcTxIjVbb4YnzV0U1Wr4y4tYnuazpeKI1mtS2vWq9zuoRpkmDN5/jCCYOIWNv2aHnepdk1QIYCOE6InncBmAUFgsPgt49Tw3S2NsdFJ8yFYk2S4DS+pS87XKryYxIKxDPyQ3y12k7jwIMb8l+RrEhLfwIag5MMl9H4YPdGRZ3axmFB9hkVm8eVStZUk8Q5xtE0sVvNCcmZa2GQ7JkHiHV25Iw2F27N5kcFgGl+TB5+9uzBJk+9LsHn98+O08aZ0tXsdLF0spcrdV+8luQMi/G1JbNHv6XQOU1ILm8yl5/RuumkvK4gieujL9CTfWxTSWubg2QxRv7dC8zJwK+RselyF9TVgwryvyJB9F85RszCbvgth1T0NyS6kQrLUkQ+IQRfV5FiFesTltvCVi132K71HmCzz6KD9fm4QrXJnYHDLE0n1KDn7DFxy7Hu2w6/axRaBmeXWGxwKQpNIs7+bI92XffFkofSX4OpXXBjf2R+85SGTTd0g6ic3ZstcEhQvDs7DiwnZC2subLoq7rnAHcE9D23xK6lnelv/AQUzverk/BQVup4tYABuBdN3/BbASYVrwMWE5JtkdPrWzK/3uT1ACOElW0rV0ohxxJWI0fyR5W5z/G5UCWyXEl716BZAmkTzXLILyOmnvmn2Ss82KS7xKudvtExiswZSHkd6npy7iNexCJegMd+qb7Xez8gZCsTsss1f7JolCEAUbMpkRsxDMthmbpEf336UHoNJaw2xgb2Y/9M024dusCzTXmU1aPYA9o/kt3seBOpc1JB6qhVuEcv15mdXLf4f80b8k8l3Bporn1vzwkl4Xnalzn5me/lPqAedVkcym6ONLVSzvFebZRX9KiIbNZ8tNb2TuMXyocGZOPsdTq1kV//ol4bt4kRSfHsyDGH+dnp6SF4P4NRp/vW/G179/iX1HrGeFF+bjqua8OuCF2lAGj53yfbN5Tf34/BUtfMeSq2oln1l/c7FxgDkmcNkIg1zXfkoLoV+t3HP1oqZ9s0vKIGj+wkqWMPbNoXvu4+K3mr8iMtObwyHlSZkKAJmpOiSOMb7Sc6Yzwye4STf2cuZzxS98xFdlG4B/jpwCFW9UZN1l++b0qd1+hLK6MZu4cOE/6Nvu0riAlR5TrLuCZzr7JikAbfhbz1jDOQKZVdzh/bBJoDUL8udzc0qKgV8Y5Sf35LUJC6C++3+aU8RgLTtlvO8TuGsSiXR/4e19M+7PMTHIy4sPq3nprPwq7s8zcuDVtxygoYsDN/nSjDkwXwYog5YolAVf8eIGHvhl7I/OVjD2C9e+iIIPseCZ4qY7JHqvYeNdMzyxbZIrfC444oO+bzHb5pAuJXvA5cGkxSAMq5ddLxMC8OKrCPnEIH662+aUVtAXKlP7NzPjEG4b7aCad0fz+7AdNufY3Fix+yYjPbRDkm/DFzK4WtV638YqnuLrB2ZhUGp04utl+d31HdiOr32ixrJ2fl6lITBpsROWvpO4ojKzBGndRVHyVd/4zJR9t90mVf3Z8I+rK9kdutisYXjiYo02++7L7NoJwdfwzolcfRxTyse583bCuU2Ev+Qj8XAHg5WJF/VKj3frNAZGKHarZ+zDCCspCHul5/mendPbH3RUdHfu0V2Gk1xUwo0szYFMCu7neGUfmxpr/vqkYEL0Ilpmo1CufURPLNcLl5p6RYwXr86pjHzhJq9unNMFYej+xJD9eTdG/ize2stTCcCAukwQdQfV2g/z2/4uksEeRLFQW+JKF487SDxJwQo2mJoHd4ipJO9+z5lDDh9xzIm74/5rkg4fMZt/TO/ylazIkIHVxHm+LAR6cjVsBT5O7thlmdLVkwI+i0si85o5E5o7FSRkGQFiWTVJMXz+GpRMd8fzkFhtNZtvFpVbyjJV8JG16QUk/PnL8qZDC7evNkNatYy/D5blR4c20WsvOMlDObcsMzBm/Oh+Q/mhfZmVqS5Zvnbd5HUA7/hTkrCm2QKb4QrmzKyf5smDecluGUxCAGzuYG6u0pBp1t+XBfK5H+Ir4yQreVyFEyeQ3l9l8dCme07whcRyvYlM57z1XVy1eh+SW75YH1KQp3jp7BAbrDUbVshrl4dESLywyzzYG3fqYf206zefvusOH09JlLvgb/bMTNFhvRn608ndar/g/HjHMX1Yb4f+2J/H7+Dvx+PQPyVA39XRUNadGf39hqDDYR1fUsFAfsfePKxDWOV3h4/Y9WQO3tVditNY7CbvMctCXBYBGQz3OxoPh/WxP3WUjnq5gsfzuDTV7xCcDuuh3SVFyFlZJwvn1D9DyE+yUO/gYX0iIrCuVVarPiS6MB/vtnyzFAczqaJe8ZFR/MHcb9ukFnvBj5DV1AFMkox+f3XNQ3IPDG/0y4AYkmKhQqp37HgEk1bl4y9f5euOEqTurzOlifXzX4/x9jCTGefzx26AdGw2Kbj8Nd7L4OISufwZnRZfSlL8MiLy7F44vlpzhlrH1Idk+Zqfmb6cEy32/kxggJFU+7g/WeqQ3B7Fq6zB1uLTcXnCPe+fkjrb7EkfuNXVsv8EdRZpzR4UVwD1z5AhAkk9p7HfvLbJncuKrwSSEQ4RcrIm+YXNVXA4nPdtYiyW7CmU4SMEJuZt/E2NkTV0CV7/9FOb+LT43eqVaR0TD38cEPS0nOP9VXX7zeacuv/5MEh2DRBMGrfO0gbvl+qjZFaWttzcu0miP27fuZnzaVhpBdf04rkbK7Sm9WxuvocyvUCNu3/CZ3mwSfqZ+yn5VXkekxuGWBePuG5v6uMCuuw91/zpldr9r5U8mK1WujrpNYFmafaWexJXq9B8JSmWjfWHtJwNH83Mc4nEX11fTOtDvRDqeN1cCyC/+1/mF2dJtupCDlZscytNXq5ehkElPIe22cYXzrF53RkivAT2HSTfxJFx/LWOGZALPbu/smh/OI3N2G5em0PsPVb8pssAA1P5AixW1L4N1nfQjAGyTJYHeGwPTVzpt+DLWvL7B8H8QywT5/Myl8GgxpzQOmv4zND6ceySMosXaecPQsydOSyYdbNt9t9hAazEQsTqEFc6luhcfM3aHAcHQAuaklDvuFbeAWvTWNn7TRIeUhzdwqva2fElt4SKgnW9TL5WnkST6E8Gkj+J/bF1a3n4Oyv4zGqdyhsGsE3Dou/fYAAjUSj4OFhWn+iHl+awQHws6fGy7wWk2M3GXxaS6VaXxPazvJ8/xBFG4kFjg+kz9JteSlux3JkVge4RD5dsinyUemYDn5ObIix/dwa/EOcxTdGr2ZCfLJikLBxLFLNiU8lc3rK/4oLkrJc+Q39vCQeV7FF6g8sVoDWxqcLymSrZTr117eepLAtXGf/t+HP5aXyWf/2pjKifvzGMpf4oMFvygpynfJYcj7+dXcDF00BUKmsRWpK1KNkUrZm64gMFPN9mGQjgGJo4XcSyxiB+3Y6z2t4FG8/F2xaOTZdk2Jf8scHTIkg/sxstS74Qy83FBALgNV23lkQf3h+/HQAm2ZTXao+Fi8azkHe7OMQuU60gBwYrqSbBCxcJkeVt8fNTTdYY1DtM+Av3p/J3mWW2F0B5bcfU9Cb4Kzaz8z2/iPX+coV4X0vcGb5AR2ZXD8mdcRXvs8n2Jc324y0niyInAzYJzLj/MmOA0W3Ou2ZIyhmVfPAUr50cm1N6kzx/jxBrQQQoadVcPkw3AwbqjBwSj1u+AsbqhjqCx+Yt5gYly68yB1x8MwhftvV6oQDQwXfdX+dXh/NCE7+AiarBRzPxVNkOG7j2Kz5yLZtWmDkK2+E5KdJkWKk0I5QQmCTCnbXoXLc8zmu2GVY4mSmAQdHkJ3BeyM3w63ClkP8NArDDN4sjt3xuwg1Au9jNpPkkngyMYzsr+cFXIeDZ7y7JI1V82k2UiMgCG5M4KyHYMI7M2TIraabYEyqzY3exP9mwYTaZHbLrxyRQ0LDutwyYPqlrbfhyknkgSf7Xe6Ac4UyLKJDlQBkKTC+CKfg61jx/nt/CyNtI/XbmmaKLLYo31/3nfghRioP83h1vsRDzFOvExaUhtlio/XEddqLRZPJcMoQBoJKYXbbg5vWY3WN/OnVPcd6JYZmBvG6vDDcORkIny/VyPcPItniBS14cy8y+AxRLiBUbyJHrU3yJrLpMH9a3GeeP/edZnvX9sW/HtNiEkHzOWx7K8zmJu7+/TulxaB83SfybEGyFrIxsOrTPSb5wyQdSZLbJ0J7S6wAqNjI2s+AAZ3ibWYwNa9HK8HSCFTt9eXPdNThpqANfIjEH6S3VVTPRNDyY/ql56nZ4H3i8dnyx2ozRxoMbk3xvNt/nhq6Ncd4GW95lumosBxOSQWKf9G1ZExdRHKmhl1cDCV2SGsTScsaK6ADFwsm7lhvgpPTH18e+7gY4Dv1PdANOtDn4m0QzJN3vu8Rwwt+N4ReniBdHXc1MATRpiXj2+gze/3wceogN3CSurZK/mCE7h8d2SPeM4UuOZ7g5QkrKQ/P3KGaEgaH/kl5WcH+hsuP5aSkjkZWH+e6cD5vxvJDayC5d5qQ6H4/t2CaHcMFbzDPDi31FrOGKj1k7fh37NDVfvCM90sF5hGCGRwS0TuOjBV+4iYf787k5jN04yzYzbP4cT50E669JvVA2upRXjhDQOSkSyF+tlIMzqyrDsgJWL//53M7rm7CKUa43bVx+QrN3aczqPt56ieL1urA/n9NwGP7mYJaj/Xzux1/D/9rT32P773+l7K8b0DCG/vjanuDfEUdg7ez8qYjwk1Bl3v3JsgPqZtwZ1neTXCDLQx2aWAnla3rmYHSJ8CAkGwfPb+HkinPNuxFYohiSRGFxWU//oZ4XteGALIYWsuGTuTEdtrOrzC5sCA/1beUBHJzv/t/SrrW3bSQJ/hd/2PUBC1vUW7fJ7g85HwJKGksTSyTNh2QH2P9+GEqU2TWsHlL3KUgQFKnhPHq6q6tARDAaU+6E/k7YdthqEF72u2TWKN0MzOGnggOTYrcrLjcazD7nSCgccyVAKCVpkxyUdJd01+OpKeeuJPrAppz7wn+ekZKxE8pT4qGcw+i4tYy5Kp5gJzNILOHRSwuv1eQmzjLogac7uzLSJi7SJIa8UxRxm1QFamMsXoZnPFdKDwIHlGwgWqWZGd7OcMW5QEgwykjiW6bZgJlNxB1glXxI7m5Xr9Zrab3jHDBbm2Pfx4pquvGwNzfbCtrR5rQhll/4ahjv5siNAhSgq3vsF+No6wwa3F3o6apN40yhnmU/w4xfUmmsd3uUNODgvknK7L8iydCDS/oq098hyTCW3iC0rwrqFncw/nOzA98driWtg0ihTU7NbAJe5YvtOooNw+8cudlhXYfnN/vTkXJz+P7yYDdp8vIAQr1jntBT3vJwYbbubQalrEB9RfKHOba8Bs54yln5IrUtKKR4eZW2ibm1H+35jEYKiaQHnt3ZtJJhCW9I0z6u7JUft7bth2jUvEHPteWEibG4FdFrrzbnjinUoSgnSFumDgWaknWXPAqDnBvOkmzsVJTdMNkiQW3ELeCU7RCipYDpMsGoqxkdtr/c37jZOkS6OYwuVzvX+FaW9xUOIzIuA9Rjd7tiyrfjygE9NqH3CmWhRpQ5qH3eGgfnyT3H5ntlpW7fnC8DZc+pYYofuzyGKz+lMmh7hbtWYQ89l+hUPqB3P4tGdEJoW2peeXvX5A7HcDedPC3TQOPXHyCwTnC9G3ebQfiw6Hl9N4XdVqhGe8fOUaQH2F15Wvj+akhuiixNoOrCaxjNcGrDWOMB5W24WuJF3llyG/QyKeuP5ug4HxfcaTK8F3vOVXPOnGDZW7W/u/uxTlr7hNxnzkpQFnqNBGVbKk03URZomaOYP42clPEsK2m8uOR2hJ1ER44q724z+hu1GMPhQM5YF5/5coJDr6YJaiJqq+tk0CCH3oyUsT2ZHBLLE04kVqbMOc6lsueSwihHjJW7+YQ3eQQpkjnSl6IR5wvwI90mm+d9UoiU8IzG/2MNSOwwS3ob1oanPNk3z2lgymnbnJeep5KxueQ1s3AyOE1LtGue0DwI1zDIi/dKpG7HPEvGF2RlChgfHhMo2dvq4BnfDW8jySug/NJjhQ5KMZF1QF2IsxMhlq36M6pYzFdTER+zg0fu55RPPrBFfILQqnXhfFgNMkVwWJ12bMOrSA4K8qpcpFRFwYao4amzIsZb8JjnbOiOU2zq1hN52xp+RBQbixy8iOcIlB2n2ICmOV+XmDP7EqsJwMvjPBrODa1RfBHA4RWkGkj2j/FM4+1n8l1gk+IJMuVdKEHCcLHJ4Yaz4g4/ygxzKNIPnWobTPiOUMNUuez7aEWKX6+gX7huQI8vD032f795yxNzLlyzsYwGaBIn8IPxKs0Pcg3HSuIZb4xVpph3+53ztotGGiLQqTP83nF5C3Qhp5eFEA7kF+jKC99nL4BFmZsYvnyrp/wrDRCYWi2wx98PceklnmiFmCcaLqAnsynd4sZKY9Tavr5+Zp/XbCE+duHSJFJgLM9GCgqPWrTErwtcnzc8m/Xj7x26qNGIp9b5CXWBtG82M1srWfnRqP2tV0NescF7fHn4GZ9if81G0Yh+c76Rmzj/gDhqRMWwtB+9SZMteqKPKKNY2Yx8zu6YW6DwCNHIIJM2gt9SxcrGZt7KNJM09CW93sqcSTfg7tiVel9yR2Ia0hfmAHKMU9qw1BzEITSIW+h9TjnQaxwvQuinkaAAyvFa8ey69gtFk/EqaDNDNAu7wY+ORyomyoIn21byAVq8ZYDlNqLzWVtZF8t5OeV0b9y+b+d72S+DnbIeBTQa8EQn+ABsUE4H5TfiwuS2U2V5RlPaPKlSeGzbGZ/yylTPUTtnRK8O2td2MDLvS9mjym3ddQVtTNEisKSb4ul6btTclaow+fMmTV7trsrN9odJdjYxhc/yHnHvO+Vgge7Z4SScwvityby+w6fKPt5iexz9vMppsgchoyVVplJ2sQ6q6h0X+31aHSDZqis9tcR/eHBm1wf0dJzxmcfXgd2aNdBauOJF+AS5wElWAA0slGuOPVpg2yxo4OVJ3922Nj5bL/hA05zTvl7vKgW7KyrrkmdWhzJOTFoVKHnCpaKVpJqFY2ZCJZx5Et81gwGXkw0zus6hzoOSprHAsF/SmapkDEBsbs4V8Pk+i0KRUcSdkvmYHZ0sk0yB8Giew3Q4YIzb979o1CHhq2w06dHUHmnixXhbE/9coD3APb2VBeykB2SjD99W+PdKq1zO8Ra14sG/2d3ENBvyTLOf8htM/QQkONDZyd/UOTSI7YpvxmS70sDNBtrpx1yCoOlXDbJzathXGUhPudlcs/kHXWsbXNhdl7QPcdJjC7lgQtWSCw0FDauKzBi0xKWVJyUAzAwEGjSppw3YwYLllb5WMJdHQVF6iNZIovBkcXBdd5AoGreTVs0GHsi3ODgXMTa3uc0ewoYoaqWVv17sHthHPzSlmW9lBN4liZjf2PlCfgdVl7a62MO8Z77vPS9Rh4IuLWUBvFcx+M2OKVNDgck3378y7ztb7qt1LfJZgXzdio6XMocFuH2yx12V1+ijt9kxXcyfMuSUUe6LllGgj4nes/xXsvceM6UqElrQSR8zyWdlkb/iY1b0yOSSU/wh012aHlfF089MMv0n/BJ+x4fZ5OZcjhb4U8bLO4qZ9CFmXJVZ2vFZOHFYOVroY2x1Pq8WmfdZKFGMtyHwh/w06fzVRPiQBS/63zHBDrP4NS9G3oCN5roL/LCnJNv8WOTv+JQl7zm846Mkp5+L118pPmTOr4d3/JLy+PN1Z6beWlnwluw7vsq5/Plu3j+8T8/dUfjlkj/kV1xO3j/9+TVcZo0/5OPjo8zy0p9ffNO/Y9n/iuPXdPfmPSXiBo98gpV1nybcB+kNmjNVizJOtvEBDV0impFWIowaSnKqxnTGhfU5i9JprEJvxTLoJs3PFocnczvUykxqzBM0mVteULAe0W5pjmDCPaEqVkqOpoaBq/1w27grzLdnEaZNeAuJ+kJS1pbK2usgjqtXpsgAbFPwvwAC8adAe3xxhDfk9k8oq1Z9S9H1t+R9BtrAZ3iZv2NFp/JFKBFLe5E0ByHaaESvX8pmWCLDaU5z0Ddbbh6sdxEjhndzFCXykiLekd7c7ZvCXrMvMNM0MEtrpEy0uLp+HVmE4cKKi154sv+UF3t5wOdAkDc0pSKePVLrDhC8NekiU+aTYzTEcrSmtNVXSfCVeZrs/lqnh+2358tfxITg8b6yZvJqU/rO5twVKAgFkn3D5VxvQJg2Hm4UUJSfMtM+5cJrQW+AolpjDoCLNvKPWK2P6dZjPXPlixUfqGpdGBkcLLl7kva7yjz2SAjRmC5o7dfJBN+U1gBxE1LucdVuZwpfEnZCNTy1vMMFLDEfNZV+kx6zg+nAbp0/LbjAKU2xH18eXFjoErSw0ngB6a4f8fjiEUEi7rIUfgRKbA0X5ShANGxMuUDarDriyqMdKyrKMc67jKfvEGW5gMmSIm+AV3hqVeYko2VRmW9SyiLJX5Exy0lqys8qizfXrCRt/iJKJlJCupMMTznzlkN8JmX88cXQuCru1eQMx9Z4djfKAxXfi+jlhk+S0tPZ4TrtART4pvS8DwqblShsNhuu/IPxB1eYa/Tq0JCcOO1qj3wDxRqaMufBQBljT3XEBU6UALOM8611jd7Axh9efirjfGegpEBT09oUKaQ1d0QtuHrwxsq4WiO3ioZenJRUmnizRy7Q8KXvXFUT+17JUJAe18rXb4CAfKYLl3QjJUUKP2zctmO6TuvFoPr/BRX2yjEl04eAHrdxCecc3cNDWE/rePN2hsxWNKapjCAeMMh5qmca+AhPZerUr2HMhlfTrmi/TJ52SDjQskR/wB+eG1o0vqNZ7QILlxm6h2k40h4nmnKj4qZvV+EyYYGWNvN5nuzNdoT2eU2vMPNkD3mvC9WhLtqs75VJc83u1z19exY5BW41xy/INU6HbR29jOpQnmkgt5JRcUAnabhjpAOpvFv/cMHUch/Llgb2KphjWoqPSqBhkwhqjmDCC8Q5ehv3Ek3fRsu3h7FnuZccKvbm1xe5Pud6Bl3+uL5kM9fZKoTfjObFt0WzgjFhq7TvWOHqbXow0EQTPvhtDLu7D5RlHhpvKym1vPsaMw9eQ0CYWFrujdiLl1zEWlk6II5I8+bhwo4zIjYyDplxt4w5/HC+i+4NCNUoeprd80WJBvZGeszwTK0w3u7GkgaygfuqMr2b6SxUdLUEf7lP5RjNubxJQIVGyceU+7SSe/7wSk25zw1UTHnYpaGk1Q5ofHRrVu5RF5xUCvrPeLVfmUh5esb+Rjo8fA3ZI8x12jSgg8BPWvFeSz44SCqORpzK2eysfHN0aHUjo4wbuL+ZDlXGR1kWWXKdMwWplJmWVkXkoeMW1mzKwDPmqbX6AVIFj3/QURBNKKZQDc6+x/PtGI7kz/m/j+WQLUFnw3nXcXyTguBfMN2ZEtIFC17XYm9Mc5pl+maSrnztPNSiquxeF0zgG3BKlg6E3t2BSRHmVEAZnLuC3c4xnC+CKq4x3L3O3wXfYUYPYhKpcyKzG7k3UFsr7/gLwT59W0OOi6ulab87PaQ7tK+ec1oN3+w7fGTavOwmZvCu92pYVKe4E6jFcfI0D0zSEvwAOX2ag7jKoEyc8QpOWPPRXYD9Dv8xlQW/IfKZ4RCd5a8v+DqmEbAyaA0cGoEH1mEvxK9KRnLIXKtp8bSP81Ocb5/MtnqOkyR1BC0wWOFWUj0eCWmnkMwkJznXmAdsTR5TicDAgGQQNEeTlo/Mw6KfEM0NCauDdD/v8VaQzKVlKw3KxoknXR6NqWaPCgX14nk7Suo7TPbQbW9yzzDJrD7HQOMeJbTKP6HGM6cWCcpmLD8c9+prIrMmImOJEpImuDey0i53lUfuosUgZdWfRYhKZbCgqRQivk7kT5g5bCKDX6MShn1m7gCWPblz3hWhvZpXH+S5Wf4JKrGDrHjtjF7ZKisQeE8ajXelteyUe2XQ1Vkd/vp2sH955RVKQObZ6uoYi1B0Tjm5/OM4jFb1PpYZugW3oeOItdJ8WVtISW49l9NXwKzvw8vpKXyoEusOWzlaOu9NCxgcHG6IK94fy6eTV4Jd0kHiN5IqsdjHp7Ps9Z92sG9GrvopnwZBgmaVJMbZqwITZ0arnBpUmm8NEH8jGkgoCycpqsyJi6CRHNcvUi4+lViEUy7IjacVatDw9822safLPaEJHeXjSmXBdle9F6Y0hQ+sVng/g2+3+QEINnQDaA7sZnrywS4utKKzWT/HmX1u/sOPdO0cd394Eqgz3jbEl2UBJPUV74EOhw5VAfzWkJCIV7fhIwwTeMZPAGEJ5BHI1Zu937OqFzMDb+w6AJyfxhb9xCgfQIeTrUo88aR8biCvcDVWUeVpVR0xNacNJjaFhCx5bguwiXpJHhLrIlCyUGvxVem580UTmntWNpjS7x7j8td0kE5jETjQyh3v/DstxRfl2kJ0VpziAyh16M0TBMPKvjXuVqGDxOjGSq9fkhVIACu4ZnIfVvqpaxS4id9xJJ3ixBZ7jKWGm+ue5FWe+8Og80B/lvspdlkDEIAet2/780HUtAbPS40MT9g4KIxlqGSRco10OGDxNeVKur393C4yrGI10Uw8E5XiJfCryKsUQlpSBi4PpC9AUKK/t0rdHOZ8XZvctRv4tRNKi9DePC/ELBpT1hL3C3AgKH/Kde3pmXwCw+6IniPKagbx2hG3vxW5nW4sEEui3FRlaOzWSD8GrqjRHNdNjMA/mgP9Haq0dNYqY7U1qTxmuEulsvStU8+Trcf8kqbBVJ2qlnPeYh0Eg5U9XFXsAgT6cpS4q83LonLv87w+pOvnY1yUJn/O4nL/tLOvf+fx+TtmX2c8T8pXULqJ1y45DeuITlzlYPCl0WfcfZTuVdIHfEpF5pSj5RwXMv/CfUL5a0BnPCVH0LMChLtXvKys5pAJ9E5er8eULsY/2NmsM7h9zmh59hazRO2XJbCe3iAvnPDN/Wzsbn/zKt2kycZk5eXcjDMLs6TlWxD1bKOX+I5P/VqbEqKT9bTV/tq62PQA/xK5XH86Hax4A9YgUVv6pzWje2BLUhHvNQtLcV7gZEi34l4CdOO74GB4TfulQkDgazWc4HY2ORwxw8tIZ2Qdc9enZl3QmP4MDM8Jl8zme8oefxQXqsMo8cZFokfOeQ9WYDOuQwyMpBspJMzkPu/tAdrChxvknPcWtUvoRFNG0+1TKBw5pYERL7WcLVYOuBsSn7B2K03GJlSvQhldB/L95SEajUaZyHotuKFOEG0yG0lyEJ0XNE3SgpLvxUXvPBVRuADdJh0Wl4Gh38EmV5bY9T1nOH7RiMaoymHYoOGvXnHZD2WCvFn5GXRdL+1G4LDs9lVussOJb8wAhP64cLPO2R4gtgnR3pQVbpM3UAqOppSlom1aFhgq4+lw/sbZyvXN+++wm6qZt2NG9AsQ172eFcgiNw2PmMDVjwtb7q0kWY14KoRH2rZE3jd1HYn4lwYrRN4Nh60zKzmEyJ1Vyi3umT82aZVI/lo7XOwZLabg46mQFuBDE6Zv60Py75fmMu+8oPdmZYWhuP6SOqQpIHnsSfXwK6iySnPruadTYSSej/8Yzyfxn78dyj+fs9928uPydAfN6HzEJ4tt1FxSh+4en9Dzwd0yUCBeg5TlNq6iLu6oBKus1jL9xaex2NcUuH99MUbO5/PT9V8vuopxudn/ffpeJPGPyr4Xh5/pb+X3aLySK4kTZ2io0v/Zn2+LJJm8bnYykR1Naf1ZWY+tB8hEHV1QHEpup5T9pYx/+ZQd4k+TP/5++VMGppSQRgF/mSwzBwue0sM3HNeQjbWg1u1/5e+4ygKowbrZkANb0P/7x0Nm6x9oHv79n//+88//AD0s0JWUjwIA"; \ No newline at end of file diff --git a/docs/classes/torch.html b/docs/classes/torch.html index 39de96d..8bf829c 100644 --- a/docs/classes/torch.html +++ b/docs/classes/torch.html @@ -1,8 +1,11 @@ -
default=true - If true, converts & codes to characters. If false, converts characters to codes.
The processed string.
-
JS-PyTorch is a neural net matrix multiplication library -with GPU.js acceleration (translates matmul into WebGPU shader code) -and using PyTorch API syntax. -torch -Tensor Creation and Manipulation:
+- Preparing search index...
- The search index is not available
ai-research-agentClass torch
Torch is a neural net matrix multiplication library
++- Uses PyTorch API syntax for tensors and neural nets.
+- Uses GPU.js acceleration to translate matmul into WebGL shader code.
+- Neural Net API: MultiHeadSelfAttention, FullyConnected, Block,
+Embedding, PositionalEmbedding, ReLU, Softmax, Dropout, LayerNorm, CrossEntropyLoss
+
+torch
Function
tensor(data, requires_grad = false, device = 'cpu') Creates a new Tensor filled with the given data
Function
zeros(*shape, requires_grad = false, device = 'cpu') Creates a new Tensor filled with zeros
Function
ones(*shape, requires_grad = false, device = 'cpu') Creates a new Tensor filled with ones
@@ -31,61 +34,62 @@Function<
Function
sqrt(a) Returns element-wise square root of the tensor
Function
exp(a) Returns element-wise exponentiation of the tensor
Function
log(a) Returns element-wise natural log of the tensor
-Neural Network Layers: -nn.Linear(in_size, out_size, device, bias, xavier) Applies a linear transformation to the input tensor -nn.MultiHeadSelfAttention(in_size, out_size, n_heads, n_timesteps, dropout_prob, device) Applies a self-attention layer on the input tensor -nn.FullyConnected(in_size, out_size, dropout_prob, device, bias) Applies a fully-connected layer on the input tensor -nn.Block(in_size, out_size, n_heads, n_timesteps, dropout_prob, device) Applies a transformer Block layer on the input tensor -nn.Embedding(in_size, embed_size) Creates an embedding table for vocabulary -nn.PositionalEmbedding(input_size, embed_size) Creates a positional embedding table -nn.ReLU() Applies Rectified Linear Unit activation function -nn.Softmax() Applies Softmax activation function -nn.Dropout(drop_prob) Applies dropout to input tensor -nn.LayerNorm(n_embed) Applies Layer Normalization to input tensor -nn.CrossEntropyLoss() Computes Cross Entropy Loss between target and input tensor
+torch.nn +Neural Network Layers:
+Method
nn.Linear(in_size, out_size, device, bias, xavier) Applies a linear transformation to the input tensor
+Method
nn.MultiHeadSelfAttention(in_size, out_size, n_heads, n_timesteps, dropout_prob, device) Applies a self-attention layer on the input tensor
+Function
nn.FullyConnected(in_size, out_size, dropout_prob, device, bias) Applies a fully-connected layer on the input tensor
+Function
nn.Block(in_size, out_size, n_heads, n_timesteps, dropout_prob, device) Applies a transformer Block layer on the input tensor
+Function
nn.Embedding(in_size, embed_size) Creates an embedding table for vocabulary
+Function
nn.PositionalEmbedding(input_size, embed_size) Creates a positional embedding table
+Function
nn.ReLU() Applies Rectified Linear Unit activation function
+Function
nn.Softmax() Applies Softmax activation function
+Function
nn.Dropout(drop_prob) Applies dropout to input tensor
+Function
nn.LayerNorm(n_embed) Applies Layer Normalization to input tensor
+Function
nn.CrossEntropyLoss() Computes Cross Entropy Loss between target and input tensor
Optimization: optim.Adam(params, lr, reg, betas, eps) Adam optimizer for updating model parameters
Utility Functions:
-Function
save(model, file) Saves the model reruning data blob (for you to save)
-Function
load(model, loadedData) Loads the model from saved data
+Function
save(model, file) Saves the model reruning data blob (for you to save)
+Function
load(model, loadedData) Loads the model from saved data
Author
PyTorch Contributors, Leao, E. et al (2022), See also: Brain.js
-Index
Properties
Index
Properties
Properties
Static
_reshapeStatic
addStatic
atStatic
broadcastStatic
divStatic
expStatic
getType declaration
import { GPU } from "@eduardoleao052/gpu"
-Parameters
Returns any[]
Static
loadStatic
logStatic
masked_Static
matmulStatic
meanStatic
mulStatic
negStatic
nnBlock: typeof Block;
CrossEntropyLoss: typeof CrossEntropyLoss;
Dropout: typeof Dropout;
Embedding: typeof Embedding;
FullyConnected: typeof FullyConnected;
LayerNorm: typeof LayerNorm;
Linear: typeof Linear;
Module: typeof Module;
MultiHeadSelfAttention: typeof MultiHeadSelfAttention;
PositionalEmbedding: typeof PositionalEmbedding;
ReLU: typeof ReLU;
Softmax: typeof Softmax;
}
Add submodules:
-Static
onesStatic
optimAdam: typeof Adam;
}
Static
ParameterStatic
powStatic
randStatic
randintStatic
randnStatic
reshapeStatic
saveStatic
sqrtStatic
tensorStatic
TensorAdd methods from tensor.js (these methods are accessed with "torch."):
-Static
transposeStatic
trilStatic
varianceStatic
zerosSettings
On This Page
Properties
- Preparing search index...
- The search index is not available
ai-research-agentFunction addEmbeddingVectorsToIndex
VSEARCH: Vector Similarity Embedding Approximation in RAM-Limited Cluster Heirarchy
++- Compile hnswlib-node or NGT algorithm C++ to WASM JS for efficient similarity search.
+- Vector index is split by K-means into regional clusters, each being a
+specific size to fit in RAM. This is better than popular vector engines that
+require costly 100gb-RAM servers because they load all the vectors at once.
+- Vectors for centroids of each cluster are stored in a list in SQL, each
+cluster's binary quantized data is exported as base64 string to SQL, S3, etc.
+- Search: Embed Query, Compare to each cluster centroid to pick top clusters,
+download base64 strings for those clusters, load each into WASM, find top neighbors
+per cluster, merge results sorted by distance.
+
+NGT Algorithm +NGT Cluster
+Vald Vector Engine Docs +ANN Benchmarks
+Parameters
An array of document texts to be vectorized.
+Optional
options: {numDimensions: number;
maxElements: number;
} = {}
Optional parameters for vector generation and indexing.
+num Dimensions: number
The length of data point vector that will be indexed.
+max Elements: number
The maximum number of data points.
+Returns Promise<HierarchicalNSW>
The created HNSW index.
+Author
Malkov et al. (2016), +*
+Settings
On This Page
- Preparing search index...
- The search index is not available
ai-research-agentFunction convertEmbeddingsToHNSW
Generates vectors for a set of documents and creates an HNSW index using -hnswlib in C++ compiled to WASM JS for efficient similarity search.
-ANN Benchmarks
-https://github.com/brtholomy/hnsw -Pinecone - HNSW
-Parameters
An array of document texts to be vectorized.
-Optional
options: {maxElements: number;
numDimensions: number;
} = {}
Optional parameters for vector generation and indexing.
-max Elements: number
The maximum number of data points.
-num Dimensions: number
The length of data point vector that will be indexed.
-Returns Promise<HierarchicalNSW>
The created HNSW index.
-Author
Malkov, Y. et al (2016), -Tatsuma, Y. et al (2022) -*
-Settings
Understanding UMAP
+ +UMAP Algorithm Overview
-
Parameters
The dictionary of embeddings.
-Optional
options: {numberDimensions: number;
numberDistance: number;
numberNeighbors: number;
} = {}
number Dimensions: number
[default=2] - The number of dimensions for UMAP output.
-number Distance: number
[default=0.1] - The minimum distance parameter for UMAP.
+Optional
options: {numberDimensions: number;
numberNeighbors: number;
numberDistance: number;
} = {}
number Dimensions: number
[default=2] - The number of dimensions for UMAP output.
number Neighbors: number
[default=15] - The number of nearest neighbors for UMAP.
+number Distance: number
[default=0.1] - The minimum distance parameter for UMAP.
Returns Promise<PlotDataPoint[]>
An array of plot data points.
Author
McInnes et al. (2018)
-Coenen et al. (2019)
Settings
On This Page