-
Notifications
You must be signed in to change notification settings - Fork 122
/
tutorial.dl
756 lines (581 loc) · 21.6 KB
/
tutorial.dl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
/*
* Example: "Hello, world!" in Datalog
*/
// Category type with two type constructors. Since constructors have
// no arguments, this is similar to a C enum.
typedef Category = CategoryStarWars
| CategoryOther
// Declare two input relations (the `input` keyword indicates that
// these relations can only be populated by input facts and cannot
// appear in the head of a rule).
// `string` is a primitive type in ddlog.
input relation Word1(word: string, cat: Category)
input relation Word2(word: string, cat: Category)
// Computed relation populated by facts derived from rules.
output relation Phrases(phrase: string)
// Produce phrases by combining pairs of words from the same category.
// The `++` operator is string concatenation.
Phrases(w1 ++ " " ++ w2) :- Word1(w1, cat), Word2(w2, cat).
// Let's add some static facts
Word1("Hello,", CategoryOther).
Word2("World!", CategoryOther).
/*
* Example: Map hosts to IP subnets.
*/
// Type aliases improve readability.
typedef UUID = bit<128>
typedef IP4 = bit<32>
typedef NetMask = bit<32>
// IP host specified by its name and address.
input relation Host(id: UUID, name: string, ip: IP4)
// IP subnet specified by its IP prefix and mask
input relation Subnet(id: UUID, prefix: IP4, mask: NetMask)
// HostInSubnet relation maps hosts to known subnets
output relation HostInSubnet(host: UUID, subnet: UUID)
// Compute `HostInSubnet` by filtering all host-subnet pairs where host address matches
// subnet prefix and mask.
//
// Note the use of wildcard (`_`) for fields that are not relevant in this rule.
//
// Note: ddlog computes this space efficiently by applying the
// filter at the same time as it computes Cartesian product of `Host` and
// `Subnet` relations.
HostInSubnet(host_id, subnet_id) :- Host(host_id, _, host_ip),
Subnet(subnet_id, subnet_prefix, subnet_mask),
((host_ip & subnet_mask) == subnet_prefix). // filter condition
/*
* Example: Strings
*/
input relation Number(n: bigint)
output relation Pow2(p: string)
Pow2("The square of ${x} is ${x*x}") :- Number(x).
typedef ip_addr_t = IPAddr{addr: bit<32>}
typedef mac_addr_t = MACAddr{addr: bit<48>}
function to_string(ip: ip_addr_t): string {
"${ip.addr[31:24]}.${ip.addr[23:16]}.${ip.addr[15:8]}.${ip.addr[7:0]}"
}
function to_string(mac: mac_addr_t): string {
"${hex(mac.addr[47:40])}:${hex(mac.addr[39:32])}:${hex(mac.addr[31:24])}:\
\${hex(mac.addr[23:16])}:${hex(mac.addr[15:8])}:${hex(mac.addr[7:0])}"
}
typedef nethost_t = NHost {
ip: ip_addr_t,
mac: mac_addr_t
}
function to_string(h: nethost_t): string {
"Host: IP=${h.ip}, MAC=${h.mac}"
}
input relation NetHost(id: bigint, h: nethost_t)
output relation NetHostString(id: bigint, s: string)
NetHostString(id, "${h}") :- NetHost(id, h).
/*
* Example: arithmetics
*/
// Form IP address from bytes using bit vector concatenation
function ip_from_bytes(b3: bit<8>, b2: bit<8>, b1: bit<8>, b0: bit<8>)
: ip_addr_t
{
IPAddr{.addr = b3 ++ b2 ++ b1 ++ b0}
}
// Check for multicast IP address using bit slicing
function is_multicast_addr(ip: ip_addr_t): bool { ip.addr[31:28] == 14 }
input relation Bytes(b3: bit<8>, b2: bit<8>, b1: bit<8>, b0: bit<8>)
output relation Address(addr: ip_addr_t)
output relation MCastAddress(addr: ip_addr_t)
Address(ip_from_bytes(b3,b2,b1,b0)) :- Bytes(b3,b2,b1,b0).
MCastAddress(a) :- Address(a), is_multicast_addr(a).
/*
* Example: control flow
*/
function addr_port(ip: ip_addr_t,
proto: string,
preferred_port: bit<16>): string {
var port: bit<16> =
match (proto) {
"FTP" -> 20,
"HTTPS" -> 443,
_ -> {
if (preferred_port != 0)
preferred_port
else
return "${ip}:80" // assume HTTP
}
};
"${ip}:${port}"
}
input relation Endpoint(ip: ip_addr_t,
proto: string,
preferred_port: bit<16>)
output relation EndpointString(s: string)
EndpointString(addr_port(ip, proto, preferred_port)) :-
Endpoint(ip, proto, preferred_port).
/*
* Example: extern functions
*/
extern function string_slice_unsafe(x: string, from: bit<64>, to: bit<64>): string
output relation First5(str: string)
First5(string_slice_unsafe(p, 0,5)) :- Phrases(p).
/*
* Example: closures.
*/
import vec
function times2(x: s64): s64 {
x << 1
}
function vector_times2(v: Vec<s64>): Vec<s64> {
// Pass function `times2` as an argument to `map`.
v.map(times2)
}
function vector_times_n(v: Vec<s64>, n: s64): Vec<s64> {
v.map(|x| x * n)
}
relation Closures(f: |u64|: string)
Closures(|x| "closure1: ${x}").
Closures(|x| "closure2: ${x}").
relation Arguments(arg: u64)
// Apply all closures in `Closures` to all values in `Arguments`.
output relation ClosuresXArguments(arg: u64, res: string)
ClosuresXArguments(arg, f(arg)) :- Closures(f), Arguments(arg).
function test_vector_transformers(): u64 {
var vec = [[1,2,3], [4,5,6], [7]];
/* Remove entries in with less than 2 elements;
* truncate remaining entries and flatten them into a 1-dimensional
* vector; compute the sum of elements in the resulting vector.
*
* Comments in the end of each line show the output of
* each transformation. */
vec.filter(|v| v.len() > 1) // [[1,2,3], [4,5,6]]
.flatmap(|v| {
var res = v;
res.truncate(2);
res
}) // [1,2,4,5]
.fold(|acc, x| acc + x, 0) // 12
}
/*
* Example: assignment clauses and antijoins
*/
input relation Blocklisted(ep: string)
output relation SanitizedEndpoint(ep: string)
SanitizedEndpoint(endpoint) :-
Endpoint(ip, proto, preferred_port),
var endpoint = addr_port(ip, proto, preferred_port),
not Blocklisted(endpoint).
/*
* Example: @-bindings.
*/
typedef Book = Book {
author: string,
title: string
}
input relation Library(book: Book)
input relation Author(name: string, born: u32)
output relation BookByAuthor(book: Book, author: Author)
BookByAuthor(b, author) :-
// Variable `b` will be bound to the entire `Book` struct;
// `author_name` will be bound to `b.author`.
Library(.book = b@Book{.author = author_name}),
author in Author(.name = author_name).
/*
* Example: recursion
* (see path.dl)
*/
/*
* Example: FlatMap, extern functions
*/
function split_ip_list(x: string): Vec<string> {
split(x, " ")
}
input relation HostAddress(host: bit<64>, addrs: string)
output relation HostIP(host: bit<64>, addr: string)
HostIP(host, addr) :- HostAddress(host, addrs),
var addr = FlatMap(split_ip_list(addrs)).
function vsep(strs: Vec<string>): string {
var res = "";
for (s in strs) {
res = res ++ s ++ "\n";
};
res
}
output relation HostIPVSep(host: bit<64>, addrs: string)
HostIPVSep(host, vaddrs) :- HostAddress(host, addrs),
var vaddrs = vsep(split_ip_list(addrs)).
/*
* Example: `continue` and `break` statements.
*/
// Returns only even elements of the vector.
function evens(vec: Vec<bigint>): Vec<bigint> {
var res: Vec<bigint> = vec_empty();
for (x in vec) {
if (x % 2 != 0) { continue };
vec_push(res, x);
};
res
}
input relation EvensAndOdds(vec: Vec<bigint>)
output relation Evens(evens_and_odds: Vec<bigint>, evens: Vec<bigint>)
Evens(vec, evens(vec)) :- EvensAndOdds(vec).
// Returns prefix of `vec` before the first occurrence of value `v`.
function prefixBefore(vec: Vec<'A>, v: 'A): Vec<'A> {
var res: Vec<'A> = vec_empty();
for (x in vec) {
if (x == v) { break };
vec_push(res, x);
};
res
}
input relation Vect(vec: Vec<string>, sep: string)
output relation Prefix(vec: Vec<string>)
Prefix(prefixBefore(vec, sep)) :- Vect(vec, sep).
/*
* Example: Multiple heads
*/
input relation X(x: bit<16>)
output relation Sum(x: bit<16>, y: bit<16>, sum: bit<16>)
output relation Product(x: bit<16>, y: bit<16>, prod: bit<16>)
Sum(x,y,x+y),
Product(x,y,x*y) :- X(x), X(y).
/*
* Example: group_by
*/
import group
input relation Price(item: string, vendor: string, price: u64)
output relation BestPrice(item: string, price: u64)
BestPrice(item, best_price) :-
Price(.item = item, .price = price),
var group: Group<string, u64> = price.group_by(item),
var best_price = group.min().
output relation WorstPrice(item: string, price: u64)
WorstPrice(item, best_price) :-
Price(.item = item, .price = price),
var best_price = price.group_by(item).max().
output relation BestVendor(item: string, vendor: string, price: u64)
BestVendor(item, best_vendor, best_price) :-
Price(item, vendor, price),
(var best_vendor, var best_price) = (vendor, price).group_by(item).arg_min(|vendor_price| vendor_price.1).
function best_vendor_string(g: Group<string, (string, u64)>): string
{
var min_vendor = "";
var min_price = 'hffffffffffffffff;
for (((vendor, price), _) in g) {
if (price < min_price) {
min_vendor = vendor;
min_price = price;
}
};
"Best deal for ${group_key(g)}: ${min_vendor}, $${min_price}"
}
import inspect_log as log
output relation BestDeal(best: string)
BestDeal(best) :-
Price(item, vendor, price),
Inspect log::log("../tutorial.log", "ts:${ddlog_timestamp}, w:${ddlog_weight}: Price(item=\"${item}\", vendor=\"${vendor}\", price=${price})"),
var best = (vendor, price).group_by(item).best_vendor_string(),
Inspect log::log("../tutorial.log", "ts:${ddlog_timestamp}, w:${ddlog_weight}: best(\"${item}\")=\"${best}\"").
/*
* Example: primary key.
*/
input relation Article(author: string, title: string, year: u16, pages: usize)
primary key (x) (x.author, x.title)
// Output relation to mirror the contents of `Article`.
output relation OutArticle[Article]
OutArticle[a] :- a in Article().
/*
* Example: multisets.
*/
input multiset MSetIn(x: u32)
output multiset MSetOut(x: u32)
MSetOut(x) :- MSetIn(x).
/*
* Example: streams.
*/
input relation ZipCodes(zip: u32, city: string)
input stream Parcel(zip: u32, weight: usize)
// Add the name of the destination city to each parcel.
output stream ParcelCity(zip: u32, city: string, weight: usize)
ParcelCity(zip, city, weight) :-
Parcel(zip, weight),
ZipCodes(zip, city).
output stream ParcelWeight(zip: u32, total_weight: usize)
// Streaming group_by: aggregates parcel weights for each individual transaction.
ParcelWeight(zip, total_weight) :-
Parcel(zip, weight),
var total_weight = weight.group_by(zip).sum_with_multiplicities().
function sum_with_multiplicities(g: Group<u32, usize>): usize {
var s = 0;
for ((v, m) in g) {
s = s + v * (m as usize)
};
s
}
/* Aggregate the contents of the Parcel stream over time. */
// The ParcelFold relation contains aggregated parcel weights from all earlier
// transactions and the new Parcel records add by the last transaction.
relation ParcelFold(zip: u32, weight: usize)
// Add aggregated pacel weight from previous transactions.
ParcelFold(zip, total_past_weight) :- ParcelWeightAggregated-1(zip, total_past_weight).
// Add new parcels from the last transaction.
ParcelFold(zip, weight) :- Parcel'(zip, weight).
// Group and aggregate weights in the ParcelFold relation.
output relation ParcelWeightAggregated(zip: u32, weight: usize)
ParcelWeightAggregated(zip, total_weight) :-
ParcelFold(zip, weight),
var total_weight = weight.group_by(zip).sum_with_multiplicities().
/*
* Example: tagged unions
*/
typedef ip4_addr_t = bit<32>
typedef ip6_addr_t = bit<128>
typedef eth_pkt_t = EthPacket { src : bit<48>
, dst : bit<48>
, payload : eth_payload_t}
typedef eth_payload_t = EthIP4 {ip4 : ip4_pkt_t}
| EthIP6 {ip6 : ip6_pkt_t}
| EthOther
typedef ip4_pkt_t = IP4Pkt { ttl : bit<8>
, src : ip4_addr_t
, dst : ip4_addr_t
, payload : ip_payload_t}
typedef ip6_pkt_t = IP6Pkt { ttl : bit<8>
, src : ip6_addr_t
, dst : ip6_addr_t
, payload : ip_payload_t}
typedef ip_payload_t = IPTCP { tcp : tcp_pkt_t}
| IPUDP { udp : udp_pkt_t}
| IPOther
typedef tcp_pkt_t = TCPPkt { src : bit<16>
, dst : bit<16>
, flags : bit<9> }
typedef udp_pkt_t = UDPPkt { src : bit<16>
, dst : bit<16>
, len : bit<16>}
function tcp6_packet(ethsrc: bit<48>, ethdst: bit<48>,
ipsrc: ip6_addr_t, ipdst: ip6_addr_t,
srcport: bit<16>, dstport: bit<16>): eth_pkt_t
{
EthPacket {
// Explicitly name constructor arguments for clarity
.src = ethsrc,
.dst = ethdst,
.payload = EthIP6 {
// Omit argument name here
IP6Pkt {
.ttl = 10,
.src = ipsrc,
.dst = ipdst,
.payload = IPTCP {
TCPPkt {
.src = srcport,
.dst = dstport,
.flags = 0
}
}
}
}
}
}
function pkt_ip4(pkt: eth_pkt_t): ip4_pkt_t {
match (pkt) {
EthPacket{.payload = EthIP4{ip4}} -> ip4,
_ -> IP4Pkt{0,0,0,IPOther}
}
}
function pkt_ip4_(pkt: eth_pkt_t): Option<ip4_pkt_t> {
match (pkt) {
EthPacket{.payload = EthIP4{ip4}} -> Some{ip4},
_ -> None
}
}
input relation Packet(pkt: eth_pkt_t)
output relation TCPDstPort(port: bit<16>)
TCPDstPort(port) :- Packet(EthPacket{.payload = EthIP4{IP4Pkt{.payload = IPTCP{TCPPkt{.dst = port}}}}}).
TCPDstPort(port) :- Packet(EthPacket{.payload = EthIP6{IP6Pkt{.payload = IPTCP{TCPPkt{.dst = port}}}}}).
function pkt_udp_port(pkt: eth_pkt_t): bit<16> {
match (pkt) {
EthPacket{.payload = EthIP4{IP4Pkt{.payload = IPUDP{UDPPkt{.dst = port}}}}} -> port,
EthPacket{.payload = EthIP6{IP6Pkt{.payload = IPUDP{UDPPkt{.dst = port}}}}} -> port,
_ -> 0
}
}
output relation UDPDstPort(port: bit<16>)
UDPDstPort(port) :- Packet(pkt), var port = pkt_udp_port(pkt), port != 0.
function pkt_udp_port2(pkt: eth_pkt_t): Option<bit<16>> {
match (pkt) {
EthPacket{.payload = EthIP4{IP4Pkt{.payload = IPUDP{UDPPkt{.dst = port}}}}} -> Some{port},
EthPacket{.payload = EthIP6{IP6Pkt{.payload = IPUDP{UDPPkt{.dst = port}}}}} -> Some{port},
_ -> None
}
}
output relation UDPDstPort2(port: bit<16>)
UDPDstPort2(port) :- Packet(pkt), Some{var port} = pkt_udp_port2(pkt).
/*
* Example: tuples
*/
input relation KnownHost(addr: ip4_addr_t)
function addr_to_tuple(addr: ip4_addr_t): (bit<8>, bit<8>, bit<8>, bit<8>) {
(addr[31:24], addr[23:16], addr[15:8], addr[7:0])
}
output relation IntranetHost(addr: ip4_addr_t)
IntranetHost(addr) :- KnownHost(addr),
(var b3, var b2, _, _) = addr_to_tuple(addr),
b3 == 192,
b2 == 168.
output relation IntranetHost2(addr: ip4_addr_t)
IntranetHost2(addr) :- KnownHost(addr), (192, 168, _, _) = addr_to_tuple(addr).
output relation IntranetHost3(addr: ip4_addr_t)
IntranetHost3(addr) :- KnownHost(addr),
var t = addr_to_tuple(addr),
t.0 == 192, t.1 == 168.
/*
* Example: error handling.
*/
/* Lookup item in the inventory and return its price in cents. */
function get_price_in_cents(inventory: Map<string, string>, item: string): Option<u64> {
match (inventory.get(item)) {
None -> None,
Some{price} -> match (parse_dec_u64(price)) {
None -> None,
Some{p} -> Some{100 * p}
}
}
}
/* As above, but returns 0 if the item is missing from the inventory or the price
* string is invalid. */
function get_price_in_cents_unwrap(inventory: Map<string, string>, item: string): u64 {
inventory.get(item).unwrap_or_default().parse_dec_u64().unwrap_or(0) * 100
}
/* get_price_in_cents written more concisely with the help of the `?` operator. */
function get_price_in_cents_(inventory: Map<string, string>, item: string): Option<u64> {
Some{ inventory.get(item)?.parse_dec_u64()? * 100 }
}
function inventory(): Map<string, string> {
map_singleton("Falcon 9", "62000000")
.insert_imm("Soyuz", "180000000")
}
output relation PriceInCents(item: string, price1: Option<u64>, price2: u64, price3: Option<u64>)
PriceInCents("Falcon 9",
inventory().get_price_in_cents("Falcon 9"),
inventory().get_price_in_cents_unwrap("Falcon 9"),
inventory().get_price_in_cents_("Falcon 9")).
PriceInCents("Atlantis",
inventory().get_price_in_cents("Atlantis"),
inventory().get_price_in_cents_unwrap("Atlantis"),
inventory().get_price_in_cents_("Atlantis")).
/*
* Example: explicit relation type
*/
input relation Person (name: string, nationality: string, occupation: string)
function is_target_audience(person: Person): bool {
(person.nationality == "USA") and
(person.occupation == "student")
}
output relation TargetAudience[Person]
TargetAudience[person] :- Person[person], is_target_audience(person).
/*
* Example: references
*/
typedef student_id = bit<64>
input relation &School(name: string, address: string)
input relation &Student(id: student_id, name: string, school: string, sat_score: bit<16>)
relation StudentInfo(student: Ref<Student>, school: Ref<School>)
StudentInfo(student, school) :-
student in &Student(.school = school_name),
school in &School(.name = school_name).
output relation TopScore(school: string, top_score: bit<16>)
TopScore(school, top_score) :-
StudentInfo(&Student{.sat_score = sat}, &School{.name = school}),
var top_score = sat.group_by(school).max().
// Alternative syntax.
TopScore(school, top_score) :-
StudentInfo(student, &School{.name = school}),
var top_score = student.sat_score.group_by(school).max().
/*
* Example: interned values
*/
input relation OnlineOrder(order_id: u64, item: istring)
output relation ItemInOrders(item: string, orders: Vec<u64>)
ItemInOrders(ival(item), orders) :-
OnlineOrder(order, item),
var orders = order.group_by(item).to_vec().
output relation OrderFormatted(order: string)
OrderFormatted(formatted) :-
OnlineOrder(order, item),
var formatted: string = "order: ${order}, item: ${ival(item)}".
output relation MilkOrders(order: u64)
MilkOrders(order) :- OnlineOrder(order, i"milk").
typedef StoreItem = StoreItem {
name: string,
description: istring
}
typedef IStoreItem = Intern<StoreItem>
input relation StoreInventory(item: IStoreItem)
output relation InventoryItemName(name: string)
InventoryItemName(name) :-
StoreInventory(item),
var name = ival(item).name.
/*
* Example: Advanced features
*/
// The Load_Balancer relation instantiates Option type for strings.
input relation Load_Balancer (
lb: bigint, // bigint is a primitive ddlog type that models
// unbounded mathematical integers.
ls: bigint,
ip_addresses: string,
protocol: Option<string>,
name: string
)
typedef stage_t = LS_IN_PRE_LB
| LS_OUT_PRE_LB
input relation Logical_Switch (
ls: bigint
)
// Relation that represents OVS flows.
output relation Flow(lr: bigint,
stage: stage_t,
prio: bigint,
matchStr: string,
actionStr: string)
// The following rule illustrates several new syntactic constructs.
//
// 1. Note the use of named arguments in the head of the relation (e.g., `.stage=LS_IN_PRE_LB`).
// This syntax is more verbose, but sometimes more readable especially for relations that have
// several arguments.
// 2. Note the `$` syntax for string literals. A string literal prefixed by `$` is an interpolated
// string. It can contain arbitrary ddlog expressions enclosed in `${}`. These expressions are
// automatically converted to string representation and concatenated with the rest of the string.
// 3. The body of the rule uses pattern matching to filter only those Load_Balancer records whose
// protocol is specified (i.e., is not `None`). Alternatively, one could match on a specific
// protocol, e.g., TCP, by writing `Some{"TCP"}` instead of `Some{_}`.
Flow(.lr=ls,
.stage=LS_IN_PRE_LB,
.prio=100,
.matchStr= "ip4.dst == ${addresses}",
.actionStr="{ reg0[0] = 1; next; }") :-
Load_Balancer(_, ls, addresses, Some{_}, _).
Flow(.lr=ls,
.stage=LS_OUT_PRE_LB,
.prio=100,
.matchStr="ip4",
.actionStr="{ reg0[0] = 1; next; }") :-
Logical_Switch(.ls=ls),
Load_Balancer(.ls=ls).
// The above two rules can be equivalently written using FTL syntax.
// Introduce another Flow relation, so that we can compare the results of the two encodings.
output relation Flow1(lr: bigint,
stage: stage_t,
prio: bigint,
matchStr: string,
actionStr: string)
for (lb in Load_Balancer) {
var a = lb.ip_addresses in
match (lb.protocol) {
Some{_} -> Flow1(lb.ls, LS_IN_PRE_LB, 100, "ip4.dst == ${a}", "{ reg0[0] = 1; next; }"),
None -> {}
}
}
for (ls in Logical_Switch) {
for (lb in Load_Balancer if lb.ls == ls.ls) {
Flow1(ls.ls, LS_OUT_PRE_LB, 100, "ip4", "{ reg0[0] = 1; next; }")
}
}