-
Notifications
You must be signed in to change notification settings - Fork 260
/
linearRegCostFunction.m
44 lines (30 loc) · 1.26 KB
/
linearRegCostFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
%regression with multiple variables
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
% cost of using theta as the parameter for linear regression to fit the
% data points in X and y. Returns the cost in J and the gradient in grad
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost and gradient of regularized linear
% regression for a particular choice of theta.
%
% You should set J to the cost and grad to the gradient.
%
h = X*theta;
hError = h - y;
sumSquaredError = sum(hError .^ 2);
regTermLeft = (1/(2 * m)) * sumSquaredError;
thetaWithoutBias = theta(2:end);
sumSquaredTheta = sum(thetaWithoutBias .^ 2);
regTermRight = (lambda / (2 * m)) * sumSquaredTheta;
J = regTermLeft + regTermRight;
grad = (1/m) * X' * hError;
grad(2:end) += (lambda / m) * thetaWithoutBias;
% =========================================================================
grad = grad(:);
end