-
Notifications
You must be signed in to change notification settings - Fork 5
/
api_launch_no_half.py
183 lines (161 loc) · 5.77 KB
/
api_launch_no_half.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import json
import asyncio
import time
from fastapi import FastAPI
from sse_starlette.sse import EventSourceResponse
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from typing import List, Optional
import uvicorn
import argparse
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
from transformers import AutoModel, AutoTokenizer
import torch
torch.cuda.empty_cache()
modelName = "THUDM/chatglm-6b"
tokenizer = None
model = None
class Item(BaseModel):
msg: str
class Message(BaseModel):
role: str
content: str
class ChatData(BaseModel):
messages: List[Message]
max_tokens: Optional[int] = 1024
top_p: Optional[float] = 0.9
temperature: Optional[float] = 0.5
user: Optional[str] = 'user'
n: Optional[int] = 1
stream: Optional[bool] = False
class ChatCompletion(BaseModel):
message: Message
class ChatResponse(BaseModel):
choices: List[ChatCompletion]
def load_model():
print('load_model')
global tokenizer
global model
tokenizer = AutoTokenizer.from_pretrained(modelName, trust_remote_code=True)
model = AutoModel.from_pretrained(modelName, trust_remote_code=True,device_map='auto').cuda()
MAX_TURNS = 20
MAX_BOXES = MAX_TURNS * 2
async def predict(input, max_length=None, top_p=None, temperature=None, history=None, stream=False):
if not model:
if stream:
for i in range(10):
yield f'测试:这是测试内容 {i+1}/10。\n', []
await asyncio.sleep(0.2)
else:
yield '测试:这是测试内容',[]
return
if history is None:
history = []
if stream:
# 以流的形式响应数据
old_response_len = 0
next_text = ''
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, temperature=temperature):
if len(response) == old_response_len:
continue
next_text = response[old_response_len:]
old_response_len = len(response)
yield next_text, history
await asyncio.sleep(0.2)
else:
# 一次性响应所有数据
response, history = model.chat(tokenizer, input, history, max_length=max_length, top_p=top_p, temperature=temperature)
yield response, history
async def event_stream(speak, max_tokens, top_p, temperature, history):
async for response, _ in predict(speak, max_tokens, top_p, temperature, history, stream=True):
yield {
"data": json.dumps({'choices': [{'delta': {'role': 'assistant', 'content': response}}],'created':int(time.time()),'object':'chat.completion.chunk'})
}
yield {
"data": json.dumps({'choices': [{'delta': {},"finish_reason":"stop"}],'created':int(time.time()),'object':'chat.completion.chunk'})
}
yield {
"data": "[DONE]"
}
app = FastAPI()
def convert_to_tuples(data):
messages = []
user = ''
assistant = ''
for item in data:
if item.role == 'user' or item.role == 'system':
user = item.content
elif item.role == 'assistant':
assistant = item.content
if assistant:
messages.append((user,assistant))
user = ''
assistant = ''
return messages
@app.post('/v1/chat/completions')
async def chat_component(data:ChatData):
try:
messages = data.messages
max_tokens = data.max_tokens
top_p = data.top_p
temperature = data.temperature
user = data.user
n = data.n
stream = data.stream
history = convert_to_tuples(messages)
# 在这里执行聊天逻辑,返回聊天结果
speak = ''
if len(messages) > 0 and (messages[-1].role == 'user' or messages[-1].role == 'system'):
speak = messages[-1].content
if stream:
# 以 SSE 协议响应数据
generate = event_stream(speak, max_tokens, top_p, temperature, history)
return EventSourceResponse(generate, media_type="text/event-stream")
else:
# 一次性响应所有数据
async for response, _ in predict(speak, max_tokens, top_p, temperature, history):
return JSONResponse(status_code=200, content={'choices': [{'message':{'role':'','content':response}}]})
except Exception as e:
return JSONResponse(
status_code=500,
content={
"error": {
"message": str(e),
"type": "invalid_request_error",
"param": "messages",
"code": "error"
}
}
)
@app.post("/chat")
async def create_item(item:Item):
async for msg, _ in predict(input=item.msg):
return msg
def main(port, model_name, debug,corsOrigins):
# 在这里编写你的代码
global modelName
modelName = model_name
if not debug:
load_model()
app.add_middleware(
CORSMiddleware,
allow_origins=corsOrigins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
uvicorn.run(app, host="127.0.0.1", port=port)
print('server stop')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--port", type=int, default=8080, help="port number")
parser.add_argument("-m", "--model_name", type=str, default=modelName, help="model name or model path")
parser.add_argument("-d", "--debug", action="store_true", help="enable debug mode")
parser.add_argument("-cors", "--cors", type=str, help="cors domains")
args = parser.parse_args()
print(args)
origins = ["*"]
if args.cors:
origins = args.cors.split(',')
main(args.port, args.model_name, args.debug,origins)