This repository has been archived by the owner on Dec 27, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
/
process_dataset.py
264 lines (245 loc) · 9.38 KB
/
process_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import argparse
import json
import multiprocessing
import os
import sys
import traceback
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Union, Optional
import dgl
import joblib as J
import networkx as nx
import torch
from androguard.core.analysis.analysis import MethodAnalysis
from androguard.core.api_specific_resources import load_permission_mappings
from androguard.misc import AnalyzeAPK
from pygtrie import StringTrie
ATTRIBUTES = ['external', 'entrypoint', 'native', 'public', 'static', 'codesize', 'api', 'user']
package_directory = os.path.dirname(os.path.abspath(__file__))
stats: Dict[str, int] = defaultdict(int)
def memoize(function):
"""
Alternative to @lru_cache which could not be pickled in ray
:param function: Function to be cached
:return: Wrapped function
"""
memo = {}
def wrapper(*args):
if args in memo:
return memo[args]
else:
rv = function(*args)
memo[args] = rv
return rv
return wrapper
class FeatureExtractors:
NUM_PERMISSION_GROUPS = 20
NUM_API_PACKAGES = 226
NUM_OPCODE_MAPPINGS = 21
@staticmethod
def _get_opcode_mapping() -> Dict[str, int]:
"""
Group opcodes and assign them an ID
:return: Mapping from opcode group name to their ID
"""
mapping = {x: i for i, x in enumerate(['nop', 'mov', 'return',
'const', 'monitor', 'check-cast', 'instanceof', 'new',
'fill', 'throw', 'goto/switch', 'cmp', 'if', 'unused',
'arrayop', 'instanceop', 'staticop', 'invoke',
'unaryop', 'binop', 'inline'])}
mapping['invalid'] = -1
return mapping
@staticmethod
@memoize
def _get_instruction_type(op_value: int) -> str:
"""
Get instruction group name from instruction
:param op_value: Opcode value
:return: String containing ID of :instr:
"""
if 0x00 == op_value:
return 'nop'
elif 0x01 <= op_value <= 0x0D:
return 'mov'
elif 0x0E <= op_value <= 0x11:
return 'return'
elif 0x12 <= op_value <= 0x1C:
return 'const'
elif 0x1D <= op_value <= 0x1E:
return 'monitor'
elif 0x1F == op_value:
return 'check-cast'
elif 0x20 == op_value:
return 'instanceof'
elif 0x22 <= op_value <= 0x23:
return 'new'
elif 0x24 <= op_value <= 0x26:
return 'fill'
elif 0x27 == op_value:
return 'throw'
elif 0x28 <= op_value <= 0x2C:
return 'goto/switch'
elif 0x2D <= op_value <= 0x31:
return 'cmp'
elif 0x32 <= op_value <= 0x3D:
return 'if'
elif (0x3E <= op_value <= 0x43) or (op_value == 0x73) or (0x79 <= op_value <= 0x7A) or (
0xE3 <= op_value <= 0xED):
return 'unused'
elif (0x44 <= op_value <= 0x51) or (op_value == 0x21):
return 'arrayop'
elif (0x52 <= op_value <= 0x5F) or (0xF2 <= op_value <= 0xF7):
return 'instanceop'
elif 0x60 <= op_value <= 0x6D:
return 'staticop'
elif (0x6E <= op_value <= 0x72) or (0x74 <= op_value <= 0x78) or (0xF0 == op_value) or (
0xF8 <= op_value <= 0xFB):
return 'invoke'
elif 0x7B <= op_value <= 0x8F:
return 'unaryop'
elif 0x90 <= op_value <= 0xE2:
return 'binop'
elif 0xEE == op_value:
return 'inline'
else:
return 'invalid'
@staticmethod
def _mapping_to_bitstring(mapping: List[int], max_len) -> torch.Tensor:
"""
Convert opcode mappings to bitstring
:param max_len:
:param mapping: List of IDs of opcode groups (present in an method)
:return: Binary tensor of length `len(opcode_mapping)` with value 1 at positions specified by :poram mapping:
"""
size = torch.Size([1, max_len])
if len(mapping) > 0:
indices = torch.LongTensor([[0, x] for x in mapping]).t()
values = torch.LongTensor([1] * len(mapping))
tensor = torch.sparse.LongTensor(indices, values, size)
else:
tensor = torch.sparse.LongTensor(size)
# Sparse tensor is normal tensor on CPU!
return tensor.to_dense().squeeze()
@staticmethod
def _get_api_trie() -> StringTrie:
apis = open(Path(package_directory).parent / "metadata" / "api.list").readlines()
api_list = {x.strip(): i for i, x in enumerate(apis)}
api_trie = StringTrie(separator='.')
for k, v in api_list.items():
api_trie[k] = v
return api_trie
@staticmethod
@memoize
def get_api_features(api: MethodAnalysis) -> Optional[torch.Tensor]:
if not api.is_external():
return None
api_trie = FeatureExtractors._get_api_trie()
name = str(api.class_name)[1:-1].replace('/', '.')
_, index = api_trie.longest_prefix(name)
if index is None:
indices = []
else:
indices = [index]
feature_vector = FeatureExtractors._mapping_to_bitstring(indices, FeatureExtractors.NUM_API_PACKAGES)
return feature_vector
@staticmethod
@memoize
def get_user_features(user: MethodAnalysis) -> Optional[torch.Tensor]:
if user.is_external():
return None
opcode_mapping = FeatureExtractors._get_opcode_mapping()
opcode_groups = set()
for instr in user.get_method().get_instructions():
instruction_type = FeatureExtractors._get_instruction_type(instr.get_op_value())
instruction_id = opcode_mapping[instruction_type]
if instruction_id >= 0:
opcode_groups.add(instruction_id)
# 1 subtraction for 'invalid' opcode group
feature_vector = FeatureExtractors._mapping_to_bitstring(list(opcode_groups), len(opcode_mapping) - 1)
return torch.LongTensor(feature_vector)
def process(source_file: Path, dest_dir: Path):
try:
file_name = source_file.stem
_, _, dx = AnalyzeAPK(source_file)
cg = dx.get_call_graph()
mappings = {}
for node in cg.nodes():
features = {
"api": torch.zeros(FeatureExtractors.NUM_API_PACKAGES),
"user": torch.zeros(FeatureExtractors.NUM_OPCODE_MAPPINGS)
}
if node.is_external():
features["api"] = FeatureExtractors.get_api_features(node)
else:
features["user"] = FeatureExtractors.get_user_features(node)
mappings[node] = features
nx.set_node_attributes(cg, mappings)
cg = nx.convert_node_labels_to_integers(cg)
dg = dgl.from_networkx(cg, node_attrs=ATTRIBUTES)
dest_dir = dest_dir / f'{file_name}.fcg'
dgl.data.utils.save_graphs(str(dest_dir), [dg])
print(f"Processed {source_file}")
except:
print(f"Error while processing {source_file}")
traceback.print_exception(*sys.exc_info())
return
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Preprocess APK Dataset into Graphs')
parser.add_argument(
'-s', '--source-dir',
help='The directory containing apks',
required=True
)
parser.add_argument(
'-d', '--dest-dir',
help='The directory to store processed graphs',
required=True
)
parser.add_argument(
'--override',
help='Override existing processed files',
action='store_true'
)
parser.add_argument(
'--dry',
help='Run without actual processing',
action='store_true'
)
parser.add_argument(
'--n-jobs',
default=multiprocessing.cpu_count(),
help='Number of jobs to be used for processing'
)
parser.add_argument(
'--limit',
help='Run for n apks',
default=-1
)
args = parser.parse_args()
source_dir = Path(args.source_dir)
if not source_dir.exists():
raise FileNotFoundError(f'{source_dir} not found')
dest_dir = Path(args.dest_dir)
if not dest_dir.exists():
raise FileNotFoundError(f'{dest_dir} not found')
n_jobs = args.n_jobs
if n_jobs < 2:
print(f"n_jobs={n_jobs} is too less. Switching to number of CPUs in this machine instead")
n_jobs = multiprocessing.cpu_count()
files = [x for x in source_dir.iterdir() if x.is_file()]
source_files = set([x.stem for x in files])
dest_files = set([x.name for x in dest_dir.iterdir() if x.is_file()])
unprocessed = [source_dir / f'{x}.apk' for x in source_files - dest_files]
print(f"Only {len(unprocessed)} out of {len(source_files)} remain to be processed")
if args.override:
print(f"--override specified. Ignoring {len(source_files) - len(unprocessed)} processed files")
unprocessed = [source_dir / f'{x}.apk' for x in source_files]
print(f"Starting dataset processing with {n_jobs} Jobs")
limit = int(args.limit)
if limit != -1:
print(f"Limiting dataset processing to {limit} apks.")
unprocessed = unprocessed[:limit]
if not args.dry:
J.Parallel(n_jobs=n_jobs)(J.delayed(process)(x, dest_dir) for x in unprocessed)
print("DONE")