-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
47 lines (38 loc) · 2.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from data_utils import get_trimmed_glove_vectors, load_vocab, get_processing_word, CoNLLDataset
from model import NERModel
from config import Config
def main(config):
# load vocabs
vocab_words = load_vocab(config.words_filename)
vocab_tags = load_vocab(config.tags_filename)
vocab_chars = load_vocab(config.chars_filename)
vocab_pref_suff = load_vocab(config.PS_filename) ############### For prefix and suffix
vocab_pref_suff_2 = load_vocab(config.PS_filename_2)
vocab_pref_suff_4 = load_vocab(config.PS_filename_4)
# get processing functions
processing_word = get_processing_word(vocab_words, vocab_chars,vocab_pref_suff,vocab_pref_suff_2,vocab_pref_suff_4,
lowercase=True, chars=config.chars, Pref_Suff=config.pref_suff)
processing_tag = get_processing_word(vocab_tags,
lowercase=False)
# get pre trained embeddings
embeddings = get_trimmed_glove_vectors(config.trimmed_filename)
# create dataset
dev = CoNLLDataset(config.dev_filename, processing_word, ############ Here dev, test and train have the raw words and tags. Now we have to map these to corresponding word index
processing_tag, config.max_iter) ############ and tags index. Therefore, when we do model.evaluate in below lines, it calls run_evaluate in run_epoch function
test = CoNLLDataset(config.test_filename, processing_word,
processing_tag, config.max_iter)
train = CoNLLDataset(config.train_filename, processing_word,
processing_tag, config.max_iter)
# build model
model = NERModel(config, embeddings, ntags=len(vocab_tags),
nchars=len(vocab_chars))
model.build()
# train, evaluate and interact
model.train(train, dev, vocab_tags)
model.evaluate(test, vocab_tags)
#model.interactive_shell(vocab_tags, processing_word)
if __name__ == "__main__":
# create instance of config
config = Config()
# load, train, evaluate and interact with model
main(config)