-
Notifications
You must be signed in to change notification settings - Fork 0
/
gurobi.log
816 lines (688 loc) · 28.5 KB
/
gurobi.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
Gurobi 7.5.2 (mac64, Python) logging started Tue Apr 3 17:48:15 2018
Academic license - for non-commercial use only
Optimize a model with 4 rows, 4 columns and 8 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Presolve removed 4 rows and 4 columns
Presolve time: 0.02s
Presolve: All rows and columns removed
Iteration Objective Primal Inf. Dual Inf. Time
0 1.0000000e+00 0.000000e+00 0.000000e+00 0s
Solved in 0 iterations and 0.03 seconds
Optimal objective 1.000000000e+00
Optimize a model with 4 rows, 4 columns and 8 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Iteration Objective Primal Inf. Dual Inf. Time
0 4.5000000e+30 4.875000e+30 4.500000e+00 0s
3 9.0000000e+00 0.000000e+00 0.000000e+00 0s
Solved in 3 iterations and 0.02 seconds
Optimal objective 9.000000000e+00
Optimize a model with 4 rows, 4 columns and 8 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Solved in 3 iterations and 0.02 seconds
Optimal objective 9.000000000e+00
Optimize a model with 7 rows, 4 columns and 14 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Iteration Objective Primal Inf. Dual Inf. Time
0 9.0000000e+00 0.000000e+00 0.000000e+00 0s
Solved in 0 iterations and 0.02 seconds
Optimal objective 9.000000000e+00
Optimize a model with 7 rows, 4 columns and 14 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Solved in 0 iterations and 0.01 seconds
Optimal objective 9.000000000e+00
Optimize a model with 7 rows, 4 columns and 14 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Solved in 0 iterations and 0.01 seconds
Optimal objective 9.000000000e+00
Optimize a model with 7 rows, 4 columns and 14 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Solved in 0 iterations and 0.01 seconds
Optimal objective 9.000000000e+00
Optimize a model with 7 rows, 4 columns and 14 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Solved in 0 iterations and 0.01 seconds
Optimal objective 9.000000000e+00
Optimize a model with 7 rows, 4 columns and 14 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Solved in 0 iterations and 0.01 seconds
Optimal objective 9.000000000e+00
Optimize a model with 7 rows, 4 columns and 14 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Solved in 0 iterations and 0.01 seconds
Optimal objective 9.000000000e+00
Optimize a model with 7 rows, 4 columns and 14 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Solved in 0 iterations and 0.01 seconds
Optimal objective 9.000000000e+00
Optimize a model with 7 rows, 4 columns and 14 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Solved in 0 iterations and 0.01 seconds
Optimal objective 9.000000000e+00
Optimize a model with 3 rows, 2 columns and 6 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Presolve time: 0.02s
Presolved: 3 rows, 2 columns, 6 nonzeros
Iteration Objective Primal Inf. Dual Inf. Time
0 4.0000000e+30 2.750000e+30 4.000000e+00 0s
3 9.0000000e+00 0.000000e+00 0.000000e+00 0s
Solved in 3 iterations and 0.05 seconds
Optimal objective 9.000000000e+00
Gurobi 7.5.2 (mac64, Python) logging started Mon Apr 9 16:05:50 2018
Academic license - for non-commercial use only
Optimize a model with 3 rows, 2 columns and 6 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Presolve time: 0.02s
Presolved: 3 rows, 2 columns, 6 nonzeros
Iteration Objective Primal Inf. Dual Inf. Time
0 4.0000000e+30 2.750000e+30 4.000000e+00 0s
3 9.0000000e+00 0.000000e+00 0.000000e+00 0s
Solved in 3 iterations and 0.04 seconds
Optimal objective 9.000000000e+00
Optimize a model with 3 rows, 2 columns and 6 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Solved in 3 iterations and 0.01 seconds
Optimal objective 9.000000000e+00
Optimize a model with 3 rows, 2 columns and 6 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Solved in 3 iterations and 0.02 seconds
Optimal objective 9.000000000e+00
Optimize a model with 3 rows, 2 columns and 6 nonzeros
Coefficient statistics:
Matrix range [1e+00, 4e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 5e+00]
Presolve time: 0.02s
Presolved: 3 rows, 2 columns, 6 nonzeros
Iteration Objective Primal Inf. Dual Inf. Time
0 4.0000000e+30 2.750000e+30 4.000000e+00 0s
3 9.0000000e+00 0.000000e+00 0.000000e+00 0s
Solved in 3 iterations and 0.04 seconds
Optimal objective 9.000000000e+00
Gurobi 7.5.2 (mac64, Python) logging started Wed Apr 18 12:33:22 2018
Academic license - for non-commercial use only
Gurobi 7.5.2 (mac64, Python) logging started Thu Apr 19 17:38:23 2018
Academic license - for non-commercial use only
Gurobi 7.5.2 (mac64, Python) logging started Fri Apr 27 00:09:38 2018
Academic license - for non-commercial use only
Gurobi 7.5.2 (mac64, Python) logging started Sat May 5 13:34:41 2018
Academic license - for non-commercial use only
Optimize a model with 17 rows, 68 columns and 87 nonzeros
Variable types: 0 continuous, 68 integer (8 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 9e+01]
Bounds range [1e+00, 1e+00]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 0.0000000
Explored 0 nodes (0 simplex iterations) in 0.02 seconds
Thread count was 1 (of 4 available processors)
Solution count 1: 0
Optimal solution found (tolerance 1.00e-04)
Best objective 0.000000000000e+00, best bound 0.000000000000e+00, gap 0.0000%
Optimize a model with 17 rows, 70 columns and 89 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 9e+01]
Bounds range [1e+00, 1e+00]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 0.0000000
Explored 0 nodes (0 simplex iterations) in 0.02 seconds
Thread count was 1 (of 4 available processors)
Solution count 1: 0
Optimal solution found (tolerance 1.00e-04)
Best objective 0.000000000000e+00, best bound 0.000000000000e+00, gap 0.0000%
Optimize a model with 17 rows, 70 columns and 89 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 9e+01]
Bounds range [1e+00, 1e+00]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 0.0000000
Explored 0 nodes (0 simplex iterations) in 0.01 seconds
Thread count was 1 (of 4 available processors)
Solution count 1: 0
Optimal solution found (tolerance 1.00e-04)
Best objective 0.000000000000e+00, best bound 0.000000000000e+00, gap 0.0000%
Variable x
-------------------------
C56 2e+09
C57 2e+09
C58 2e+09
C59 2e+09
Gurobi 7.5.2 (mac64, Python) logging started Mon May 7 14:21:53 2018
Academic license - for non-commercial use only
Optimize a model with 17 rows, 70 columns and 89 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 2e+01]
Bounds range [1e+00, 1e+00]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 0.0000000
Explored 0 nodes (0 simplex iterations) in 0.02 seconds
Thread count was 1 (of 4 available processors)
Solution count 1: 0
Optimal solution found (tolerance 1.00e-04)
Best objective 0.000000000000e+00, best bound 0.000000000000e+00, gap 0.0000%
Variable x
-------------------------
C56 2e+09
C57 2e+09
C58 2e+09
C59 2e+09
Optimize a model with 17 rows, 70 columns and 89 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 2e+01]
Bounds range [1e+00, 1e+00]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 0.0000000
Explored 0 nodes (0 simplex iterations) in 0.01 seconds
Thread count was 1 (of 4 available processors)
Solution count 1: 0
Optimal solution found (tolerance 1.00e-04)
Best objective 0.000000000000e+00, best bound 0.000000000000e+00, gap 0.0000%
Variable x
-------------------------
C56 2e+09
C57 2e+09
C58 2e+09
C59 2e+09
Optimize a model with 17 rows, 70 columns and 89 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 2e+03]
Bounds range [1e+00, 6e+02]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 0.0000000
Explored 0 nodes (0 simplex iterations) in 0.02 seconds
Thread count was 1 (of 4 available processors)
Solution count 1: 0
Optimal solution found (tolerance 1.00e-04)
Best objective 0.000000000000e+00, best bound 0.000000000000e+00, gap 0.0000%
Variable x
-------------------------
Z(4, 0) 580
Z(4, 1) 580
Z(4, 2) 580
Z(4, 3) 580
Optimize a model with 19 rows, 70 columns and 100 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 2e+03]
Bounds range [1e+00, 6e+02]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 4800.0000000
Presolve removed 9 rows and 45 columns
Presolve time: 0.01s
Presolved: 10 rows, 25 columns, 50 nonzeros
Variable types: 0 continuous, 25 integer (5 binary)
Root relaxation: objective 2.913793e+03, 12 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 2913.79310 0 1 4800.00000 2913.79310 39.3% - 0s
H 0 0 3300.0000000 2913.79310 11.7% - 0s
0 0 2999.71671 0 2 3300.00000 2999.71671 9.10% - 0s
Cutting planes:
MIR: 1
Mod-K: 1
Explored 1 nodes (20 simplex iterations) in 0.09 seconds
Thread count was 4 (of 4 available processors)
Solution count 2: 3300 4800
Optimal solution found (tolerance 1.00e-04)
Best objective 3.300000000000e+03, best bound 3.300000000000e+03, gap 0.0000%
Variable x
-------------------------
Z(0, 0) 460
Z(0, 1) 70
Z(1, 1) 260
Z(1, 2) 330
Z(4, 2) 280
Z(4, 3) 300
DC(0) 1
DC(1) 1
DC(4) 1
Optimize a model with 19 rows, 70 columns and 100 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 2e+03]
Bounds range [1e+00, 6e+02]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 4800.0000000
Presolve removed 9 rows and 45 columns
Presolve time: 0.00s
Presolved: 10 rows, 25 columns, 50 nonzeros
Variable types: 0 continuous, 25 integer (5 binary)
Root relaxation: objective 2.913793e+03, 12 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 2913.79310 0 1 4800.00000 2913.79310 39.3% - 0s
H 0 0 3300.0000000 2913.79310 11.7% - 0s
0 0 2999.71671 0 2 3300.00000 2999.71671 9.10% - 0s
Cutting planes:
MIR: 1
Mod-K: 1
Explored 1 nodes (20 simplex iterations) in 0.06 seconds
Thread count was 4 (of 4 available processors)
Solution count 2: 3300 4800
Optimal solution found (tolerance 1.00e-04)
Best objective 3.300000000000e+03, best bound 3.300000000000e+03, gap 0.0000%
Variable x
-------------------------
Z(0, 0) 460
Z(0, 1) 70
Z(1, 1) 260
Z(1, 2) 330
Z(4, 2) 280
Z(4, 3) 300
DC(0) 1
DC(1) 1
DC(4) 1
Optimize a model with 19 rows, 70 columns and 100 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 2e+03]
Bounds range [1e+00, 6e+02]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 4800.0000000
Presolve removed 9 rows and 45 columns
Presolve time: 0.00s
Presolved: 10 rows, 25 columns, 50 nonzeros
Variable types: 0 continuous, 25 integer (5 binary)
Root relaxation: objective 2.913793e+03, 12 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 2913.79310 0 1 4800.00000 2913.79310 39.3% - 0s
H 0 0 3300.0000000 2913.79310 11.7% - 0s
0 0 2999.71671 0 2 3300.00000 2999.71671 9.10% - 0s
Cutting planes:
MIR: 1
Mod-K: 1
Explored 1 nodes (20 simplex iterations) in 0.07 seconds
Thread count was 4 (of 4 available processors)
Solution count 2: 3300 4800
Optimal solution found (tolerance 1.00e-04)
Best objective 3.300000000000e+03, best bound 3.300000000000e+03, gap 0.0000%
Variable x
-------------------------
Z(0, 0) 460
Z(0, 1) 70
Z(1, 1) 260
Z(1, 2) 330
Z(4, 2) 280
Z(4, 3) 300
DC(0) 1
DC(1) 1
DC(4) 1
Optimize a model with 19 rows, 70 columns and 100 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 2e+03]
Bounds range [1e+00, 6e+02]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 4800.0000000
Presolve removed 9 rows and 45 columns
Presolve time: 0.00s
Presolved: 10 rows, 25 columns, 50 nonzeros
Variable types: 0 continuous, 25 integer (5 binary)
Root relaxation: objective 2.913793e+03, 12 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 2913.79310 0 1 4800.00000 2913.79310 39.3% - 0s
H 0 0 3300.0000000 2913.79310 11.7% - 0s
0 0 2999.71671 0 2 3300.00000 2999.71671 9.10% - 0s
Cutting planes:
MIR: 1
Mod-K: 1
Explored 1 nodes (20 simplex iterations) in 0.06 seconds
Thread count was 4 (of 4 available processors)
Solution count 2: 3300 4800
Optimal solution found (tolerance 1.00e-04)
Best objective 3.300000000000e+03, best bound 3.300000000000e+03, gap 0.0000%
Variable x
-------------------------
Z(0, 0) 460
Z(0, 1) 70
Z(1, 1) 260
Z(1, 2) 330
Z(4, 2) 280
Z(4, 3) 300
DC(0) 1
DC(1) 1
DC(4) 1
Optimize a model with 19 rows, 70 columns and 100 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 2e+03]
Bounds range [1e+00, 6e+02]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 4800.0000000
Presolve removed 9 rows and 45 columns
Presolve time: 0.00s
Presolved: 10 rows, 25 columns, 50 nonzeros
Variable types: 0 continuous, 25 integer (5 binary)
Root relaxation: objective 2.913793e+03, 12 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 2913.79310 0 1 4800.00000 2913.79310 39.3% - 0s
H 0 0 3300.0000000 2913.79310 11.7% - 0s
0 0 2999.71671 0 2 3300.00000 2999.71671 9.10% - 0s
Cutting planes:
MIR: 1
Mod-K: 1
Explored 1 nodes (20 simplex iterations) in 0.05 seconds
Thread count was 4 (of 4 available processors)
Solution count 2: 3300 4800
Optimal solution found (tolerance 1.00e-04)
Best objective 3.300000000000e+03, best bound 3.300000000000e+03, gap 0.0000%
Variable x
-------------------------
Z(0, 0) 460
Z(0, 1) 70
Z(1, 1) 260
Z(1, 2) 330
Z(4, 2) 280
Z(4, 3) 300
DC(0) 1
DC(1) 1
DC(4) 1
Optimize a model with 19 rows, 70 columns and 100 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 2e+03]
Bounds range [1e+00, 6e+02]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 12190.000000
Presolve removed 9 rows and 45 columns
Presolve time: 0.00s
Presolved: 10 rows, 25 columns, 50 nonzeros
Variable types: 0 continuous, 25 integer (5 binary)
Root relaxation: objective 1.026373e+04, 14 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 10263.7347 0 3 12190.0000 10263.7347 15.8% - 0s
H 0 0 11668.000000 10263.7347 12.0% - 0s
H 0 0 11664.000000 10263.7347 12.0% - 0s
H 0 0 11310.000000 10263.7347 9.25% - 0s
0 0 10494.7170 0 1 11310.0000 10494.7170 7.21% - 0s
H 0 0 10739.000000 10494.7170 2.27% - 0s
0 0 10498.2341 0 9 10739.0000 10498.2341 2.24% - 0s
0 0 10509.5514 0 13 10739.0000 10509.5514 2.14% - 0s
H 0 0 10733.000000 10509.5514 2.08% - 0s
0 0 10552.2500 0 4 10733.0000 10552.2500 1.68% - 0s
* 0 0 0 10600.000000 10600.0000 0.00% - 0s
Cutting planes:
Implied bound: 4
MIR: 3
Flow cover: 1
Network: 1
Explored 1 nodes (37 simplex iterations) in 0.07 seconds
Thread count was 4 (of 4 available processors)
Solution count 7: 10600 10733 10739 ... 12190
Optimal solution found (tolerance 1.00e-04)
Best objective 1.060000000000e+04, best bound 1.060000000000e+04, gap 0.0000%
Variable x
-------------------------
Z(1, 0) 260
Z(1, 1) 330
Z(3, 0) 70
Z(3, 3) 300
Z(4, 0) 130
Z(4, 2) 450
DC(1) 1
DC(3) 1
DC(4) 1
Optimize a model with 19 rows, 70 columns and 100 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 2e+03]
Bounds range [1e+00, 6e+02]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 12190.000000
Presolve removed 9 rows and 45 columns
Presolve time: 0.00s
Presolved: 10 rows, 25 columns, 50 nonzeros
Variable types: 0 continuous, 25 integer (5 binary)
Root relaxation: objective 1.026373e+04, 14 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 10263.7347 0 3 12190.0000 10263.7347 15.8% - 0s
H 0 0 11668.000000 10263.7347 12.0% - 0s
H 0 0 11664.000000 10263.7347 12.0% - 0s
H 0 0 11310.000000 10263.7347 9.25% - 0s
0 0 10494.7170 0 1 11310.0000 10494.7170 7.21% - 0s
H 0 0 10739.000000 10494.7170 2.27% - 0s
0 0 10498.2341 0 9 10739.0000 10498.2341 2.24% - 0s
0 0 10509.5514 0 13 10739.0000 10509.5514 2.14% - 0s
H 0 0 10733.000000 10509.5514 2.08% - 0s
0 0 10552.2500 0 4 10733.0000 10552.2500 1.68% - 0s
* 0 0 0 10600.000000 10600.0000 0.00% - 0s
Cutting planes:
Implied bound: 4
MIR: 3
Flow cover: 1
Network: 1
Explored 1 nodes (37 simplex iterations) in 0.09 seconds
Thread count was 4 (of 4 available processors)
Solution count 7: 10600 10733 10739 ... 12190
Optimal solution found (tolerance 1.00e-04)
Best objective 1.060000000000e+04, best bound 1.060000000000e+04, gap 0.0000%
Variable x
-------------------------
Z(1, 0) 260
Z(1, 1) 330
Z(3, 0) 70
Z(3, 3) 300
Z(4, 0) 130
Z(4, 2) 450
DC(1) 1
DC(3) 1
DC(4) 1
Optimize a model with 21 rows, 70 columns and 185 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 2e+03]
Bounds range [1e+00, 6e+02]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 38710.000000
Presolve removed 3 rows and 32 columns
Presolve time: 0.00s
Presolved: 18 rows, 38 columns, 98 nonzeros
Found heuristic solution: objective 29240.000000
Variable types: 0 continuous, 38 integer (10 binary)
Root relaxation: objective 2.685802e+04, 23 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 26858.0204 0 4 29240.0000 26858.0204 8.15% - 0s
H 0 0 28870.000000 26858.0204 6.97% - 0s
0 0 27574.7170 0 1 28870.0000 27574.7170 4.49% - 0s
H 0 0 27820.000000 27574.7170 0.88% - 0s
0 0 27577.8347 0 8 27820.0000 27577.8347 0.87% - 0s
0 0 27585.9455 0 10 27820.0000 27585.9455 0.84% - 0s
H 0 0 27690.000000 27585.9455 0.38% - 0s
0 0 27629.8246 0 8 27690.0000 27629.8246 0.22% - 0s
0 0 27632.2200 0 10 27690.0000 27632.2200 0.21% - 0s
0 0 27677.1141 0 9 27690.0000 27677.1141 0.05% - 0s
H 0 0 27680.000000 27677.1141 0.01% - 0s
Cutting planes:
Gomory: 1
Implied bound: 2
MIR: 5
Mod-K: 1
Explored 1 nodes (52 simplex iterations) in 0.10 seconds
Thread count was 4 (of 4 available processors)
Solution count 5: 27680 27690 27820 ... 29240
Optimal solution found (tolerance 1.00e-04)
Best objective 2.768000000000e+04, best bound 2.767800000000e+04, gap 0.0072%
Variable x
-------------------------
X(0, 2) 500
X(1, 1) 650
X(2, 2) 390
Y(1, 3) 550
Y(2, 0) 490
Y(4, 4) 500
Z(1, 0) 255
Z(1, 1) 330
Z(1, 2) 5
Z(3, 0) 70
Z(3, 3) 300
Z(4, 0) 135
Z(4, 2) 445
Plant(1) 1
Plant(2) 1
Plant(4) 1
DC(1) 1
DC(3) 1
DC(4) 1
Optimize a model with 29 rows, 70 columns and 185 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 6e+02]
Objective range [3e+00, 2e+03]
Bounds range [1e+00, 6e+02]
RHS range [4e+00, 6e+02]
Found heuristic solution: objective 37910.000000
Presolve time: 0.00s
Presolved: 29 rows, 70 columns, 185 nonzeros
Variable types: 0 continuous, 70 integer (10 binary)
Root relaxation: objective 2.800354e+04, 47 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 28003.5398 0 6 37910.0000 28003.5398 26.1% - 0s
H 0 0 30400.000000 28003.5398 7.88% - 0s
H 0 0 30020.000000 28003.5398 6.72% - 0s
0 0 28420.9128 0 12 30020.0000 28420.9128 5.33% - 0s
0 0 28519.7810 0 19 30020.0000 28519.7810 5.00% - 0s
0 0 28522.0235 0 25 30020.0000 28522.0235 4.99% - 0s
0 0 28675.4157 0 12 30020.0000 28675.4157 4.48% - 0s
H 0 0 29997.000000 28675.4157 4.41% - 0s
H 0 0 29640.000000 28675.4157 3.25% - 0s
0 0 28706.4448 0 25 29640.0000 28706.4448 3.15% - 0s
0 0 28715.2481 0 27 29640.0000 28715.2481 3.12% - 0s
0 0 28770.0000 0 15 29640.0000 28770.0000 2.94% - 0s
H 0 0 29478.000000 28770.0000 2.40% - 0s
0 0 28775.0000 0 21 29478.0000 28775.0000 2.38% - 0s
0 0 28781.4856 0 30 29478.0000 28781.4856 2.36% - 0s
H 0 0 29440.000000 28781.4856 2.24% - 0s
0 0 28783.5080 0 30 29440.0000 28783.5080 2.23% - 0s
0 0 28786.8421 0 21 29440.0000 28786.8421 2.22% - 0s
0 0 28786.8421 0 21 29440.0000 28786.8421 2.22% - 0s
H 0 0 28960.000000 28786.8421 0.60% - 0s
0 0 28786.8421 0 3 28960.0000 28786.8421 0.60% - 0s
0 0 28793.3409 0 10 28960.0000 28793.3409 0.58% - 0s
0 0 28821.8182 0 13 28960.0000 28821.8182 0.48% - 0s
0 0 28834.0741 0 17 28960.0000 28834.0741 0.43% - 0s
0 0 28843.1481 0 22 28960.0000 28843.1481 0.40% - 0s
0 0 28862.5155 0 18 28960.0000 28862.5155 0.34% - 0s
* 0 0 0 28870.000000 28870.0000 0.00% - 0s
Cutting planes:
Gomory: 1
Implied bound: 3
MIR: 8
Flow cover: 1
Explored 1 nodes (176 simplex iterations) in 0.15 seconds
Thread count was 4 (of 4 available processors)
Solution count 9: 28870 28960 29440 ... 37910
Optimal solution found (tolerance 1.00e-04)
Best objective 2.887000000000e+04, best bound 2.887000000000e+04, gap 0.0000%
Variable x
-------------------------
X(0, 4) 500
X(1, 1) 550
X(1, 2) 100
X(2, 2) 390
Y(1, 1) 550
Y(2, 1) 10
Y(2, 2) 400
Y(2, 4) 80
Y(4, 4) 500
Z(1, 1) 330
Z(1, 3) 230
Z(2, 2) 400
Z(4, 0) 460
Z(4, 2) 50
Z(4, 3) 70
Plant(1) 1
Plant(2) 1
Plant(4) 1
DC(1) 1
DC(2) 1
DC(4) 1