Skip to content

vigneshramk/Lane-Instance-Segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Drivable Area Segmentation and Parameterization

PyTorch implementation of our framework for Drivable Area Segmentation and Parameterization using the ENet Architecture applied to the *Berkeley Deep Drive Dataset containing 100K drivable area maps.

Usage

Run [main.py], the script used to run the training/testing of the ENet model

python main.py [-h] [--num-epochs NUM_EPOCHS] [--learning-rate LEARNING_RATE]
               [--lr-decay LR_DECAY] [--lr-decay-epochs LR_DECAY_EPOCHS]
               [--weight-decay WEIGHT_DECAY] [--epochs EPOCHS]
               [--run-cuda CUDA] [--batch-size BATCH_SIZE]
               [--data-dir DATA_DIR] [--data-list DATA_LIST]
               [--input-size INPUT_SIZE] [--gpu-select GPU_SELECT]
               [--run-name RUN_NAME] [--mode MODE] [--load LOAD]

For help on the optional arguments run: python main.py -h

Take a look at [src/arguments.py] to check for the default arguments

Training Arguments (Example):

python main.py --gpu-select 0 --batch-size 10 --run-name train_example

(OR) Equivalently,

python main.py -g 0 -b 10 -rn train_example

Testing Arguments (Example):

Note: This example uses a model checkpoint stored in [saved_models/run4/]. If the model is elsewhere, provide the path to the model instead.

python main.py --gpu-select 0 --batch-size 5 --run-name test_example --mode test --load saved_models/run4/checkpoint_20.h5

(OR) Equivalently,

python main.py -g 0 -b 5 -rn test_example -m test -l saved_models/run4/checkpoint_20.h5

Code Organization

Directories

  • [dataset] contains the dataloader codes, the dataset (not on the repository, download it yourself with the instructions given below) and list of labels that are used by the dataloader

  • [src] contains the training and testing codes, the metrics that are used for evaluation in [src/metrics], the arguments and the helper functions used by the other codes.

  • [models] contains the ENet model architecture code definitions

  • [saved_models] contains the saved model checkpoints of our imple- mentation inside a folder corresponding to the run_name provided at run time.

Codes

  • [src/arguments.py] Contains all the parsable command-line options and their defaults.
  • [dataset/bdd_dataset.py] Contains the DataLoader classes for each of train,valid and test datasets
  • [src/train.py] Defines the TrainNetwork class used to train the model
  • [src/test.py] Defines the TestNetwork class used to test the train model

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages