forked from earlew/pwp_python_00
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PWP.py
547 lines (416 loc) · 19.3 KB
/
PWP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
"""
This is a Python implementation of the Price Weller Pinkel (PWP) ocean mixed layer model.
This code is based on the MATLAB implementation of the PWP model originally
written by Peter Lazarevich and Scott Stoermer (http://www.po.gso.uri.edu/rafos/research/pwp/)
(U. Rhode Island) and later modified by Byron Kilbourne (University of Washington)
and Sarah Dewey (University of Washington).
The run() function provides an outline of how the code works.
Earle Wilson
School of Oceanography
University of Washington
April 18, 2016
"""
import numpy as np
import seawater as sw
import matplotlib.pyplot as plt
import xarray as xr
import pickle
import timeit
import os
from datetime import datetime
import PWP_helper as phf
import imp
imp.reload(phf)
#from IPython.core.debugger import Tracer
#debug_here = set_trace
def run(met_data, prof_data, param_kwds=None, overwrite=True, diagnostics=False, suffix='', save_plots=False):
#TODO: move this to the helper file
"""
This is the main controller function for the model. The flow of the algorithm
is as follows:
1) Set model parameters (see set_params function in PWP_helper.py).
2) Read in forcing and initial profile data.
3) Prepare forcing and profile data for model run (see prep_data in PWP_helper.py).
3.1) Interpolate forcing data to prescribed time increments.
3.2) Interpolate profile data to prescribed depth increments.
3.3) Initialize model output variables.
4) Iterate the PWP model specified time interval:
4.1) apply heat and salt fluxes
4.2) rotate, adjust to wind, rotate
4.3) apply bulk Richardson number mixing
4.4) apply gradient Richardson number mixing
4.5) apply drag associated with internal wave dissipation
4.5) apply diapycnal diffusion
5) Save results to output file
Input:
met_data - path to netCDF file containing forcing/meterological data. This file must be in the
input_data/ directory.
The data fields should include 'time', 'sw', 'lw', 'qlat', 'qsens', 'tx',
'ty', and 'precip'. These fields should store 1-D time series of the same
length.
The model expects positive heat flux values to represent ocean warming. The time
data field should contain a 1-D array representing fraction of day. For example,
for 6 hourly data, met_data['time'] should contain a number series that increases
in steps of 0.25, such as np.array([1.0, 1.25, 1.75, 2.0, 2.25...]).
See https://github.com/earlew/pwp_python#input-data for more info about the
expect intput data.
prof_data - path to netCDF file containing initial profile data. This must be in input_data/ directory.
The fields of this dataset should include:
['z', 't', 's', 'lat']. These represent 1-D vertical profiles of temperature,
salinity and density. 'lat' is expected to be a length=1 array-like object. e.g.
prof_data['lat'] = [25.0].
See https://github.com/earlew/pwp_python#input-data for more info about the
expect intput data.
overwrite - controls the naming of output file. If True, the same filename is used for
every model run. If False, a unique time_stamp is generated and appended
to the file name. Default is True.
diagnostics - if True, the code will generate live plots of mixed layer properties at
each time step.
suffix - string to add to the end of filenames. e.g. suffix = 'nodiff' leads to 'pwp_out_nodiff.nc.
default is an empty string ''.
save_plots -this gets passed on to the makeSomePlots() function in the PWP_helper. If True, the code
saves the generated plots. Default is False.
param_kwds -dict containing keyword arguments for set_params function. See PWP_helper.set_params()
for more details. If None, default parameters are used. Default is None.
Output:
forcing, pwp_out = PWP.run()
forcing: a dictionary containing the interpolated surface forcing.
pwp_out: a dictionary containing the solutions generated by the model.
This script also saves the following to file:
'pwp_output.nc'- a netCDF containing the output generated by the model.
'pwp_output.p' - a pickle file containing the output generated by the model.
'forcing.p' - a pickle file containing the (interpolated) forcing used for the model run.
If overwrite is set to False, a timestamp will be added to these file names.
------------------------------------------------------------------------------
There are two ways to run the model:
1. You can run the model by typing "python PWP.py" from the bash command line. This
will initiate this function with the set defaults. Typing "%run PWP" from the ipython
command line will do the same thing.
2. You can also import the module then call the run() function specifically. For example,
>> import PWP
>> forcing, pwp_out = PWP.run()
Alternatively, if you want to change the defaults...
>> forcing, pwp_out = PWP.run(met_data='new_forcing.nc', overwrite=False, diagnostics=False)
This is a more interactive approach as it provides direct access to all of the model's
subfunctions.
"""
#close all figures
plt.close('all')
#start timer
t0 = timeit.default_timer()
## Get surface forcing and profile data
# These are x-ray datasets, but you can treat them as dicts.
# Do met_dset.keys() to explore the data fields
met_dset = xr.open_dataset('input_data/%s' %met_data)
prof_dset = xr.open_dataset('input_data/%s' %prof_data)
## get model parameters and constants (read docs for set_params function)
lat = prof_dset['lat'] #needed to compute internal wave dissipation
if param_kwds is None:
params = phf.set_params(lat=lat)
else:
param_kwds['lat'] = lat
params = phf.set_params(**param_kwds)
## prep forcing and initial profile data for model run (see prep_data function for more details)
forcing, pwp_out, params = phf.prep_data(met_dset, prof_dset, params)
## run the model
pwp_out = pwpgo(forcing, params, pwp_out, diagnostics)
## write output to disk
if overwrite:
time_stamp = ''
else:
#use unique time stamp
time_stamp = datetime.now().strftime("_%Y%m%d_%H%M")
if len(suffix)>0 and suffix[0] != '_':
suffix = '_%s' %suffix
# save output as netCDF file
pwp_out_ds = xr.Dataset({'temp': (['z', 'time'], pwp_out['temp']), 'sal': (['z', 'time'], pwp_out['sal']),
'uvel': (['z', 'time'], pwp_out['uvel']), 'vvel': (['z', 'time'], pwp_out['vvel']),
'dens': (['z', 'time'], pwp_out['dens']), 'mld': (['time'], pwp_out['mld'])},
coords={'z': pwp_out['z'], 'time': pwp_out['time']})
pwp_out_ds.to_netcdf("output/pwp_output%s%s.nc" %(suffix, time_stamp))
# also output and forcing as pickle file
pickle.dump(forcing, open( "output/forcing%s%s.p" %(suffix, time_stamp), "wb" ))
pickle.dump(pwp_out, open( "output/pwp_out%s%s.p" %(suffix, time_stamp), "wb" ))
#check timer
tnow = timeit.default_timer()
t_elapsed = (tnow - t0)
print("Time elapsed: %i minutes and %i seconds" %(np.floor(t_elapsed/60), t_elapsed%60))
## do analysis of the results
phf.makeSomePlots(forcing, pwp_out, suffix=suffix, save_plots=save_plots)
return forcing, pwp_out
def pwpgo(forcing, params, pwp_out, diagnostics):
"""
This is the main driver of the PWP module.
"""
#unpack some of the variables
#This is not necessary, but I don't want to update all the variable names just yet.
q_in = forcing['q_in']
q_out = forcing['q_out']
emp = forcing['emp']
taux = forcing['tx']
tauy = forcing['ty']
absrb = forcing['absrb']
z = pwp_out['z']
dz = pwp_out['dz']
dt = pwp_out['dt']
zlen = len(z)
tlen = len(pwp_out['time'])
rb = params['rb']
rg = params['rg']
f = params['f']
cpw = params['cpw']
g = params['g']
ucon = params['ucon']
printDragWarning = True
print("Number of time steps: %s" %tlen)
for n in range(1,tlen):
percent_comp = 100*n/float(tlen)
print('Loop iter. %s (%.1f %%)' %(n, percent_comp))
#select for previous profile data
temp = pwp_out['temp'][:, n-1]
sal = pwp_out['sal'][:, n-1]
dens = pwp_out['dens'][:, n-1]
uvel = pwp_out['uvel'][:, n-1]
vvel = pwp_out['vvel'][:, n-1]
### Absorb solar radiation and FWF in surf layer ###
#save initial T,S (may not be necessary)
temp_old = pwp_out['temp'][0, n-1]
sal_old = pwp_out['sal'][0, n-1]
#update layer 1 temp and sal
temp[0] = temp[0] + (q_in[n-1]*absrb[0]-q_out[n-1])*dt/(dz*dens[0]*cpw)
#sal[0] = sal[0]/(1-emp[n-1]*dt/dz)
sal[0] = sal[0] + sal[0]*emp[n-1]*dt/dz
# debug_here()
#check if temp is less than freezing point
T_fz = sw.fp(sal_old, 1) #why use sal_old? Need to recheck
if temp[0] < T_fz:
temp[0] = T_fz
### Absorb rad. at depth ###
temp[1:] = temp[1:] + q_in[n-1]*absrb[1:]*dt/(dz*dens[1:]*cpw)
### compute new density ###
dens = sw.dens0(sal, temp)
### relieve static instability ###
temp, sal, dens, uvel, vvel = remove_si(temp, sal, dens, uvel, vvel)
### Compute MLD ###
#find ml index
ml_thresh = params['mld_thresh']
mld_idx = np.flatnonzero(dens-dens[0]>ml_thresh)[0] #finds the first index that exceed ML threshold
#check to ensure that ML is defined
assert mld_idx.size is not 0, "Error: Mixed layer depth is undefined."
#get surf MLD
mld = z[mld_idx]
### Rotate u,v do wind input, rotate again, apply mixing ###
ang = -f*dt/2
uvel, vvel = rot(uvel, vvel, ang)
du = (taux[n-1]/(mld*dens[0]))*dt
dv = (tauy[n-1]/(mld*dens[0]))*dt
uvel[:mld_idx] = uvel[:mld_idx]+du
vvel[:mld_idx] = vvel[:mld_idx]+dv
### Apply drag to current ###
#Original comment: this is a horrible parameterization of inertial-internal wave dispersion
if params['drag_ON']:
if ucon > 1e-10:
uvel = uvel*(1-dt*ucon)
vvel = vvel*(1-dt*ucon)
else:
if printDragWarning:
print("Warning: Parameterization for inertial-internal wave dispersion is turned off.")
printDragWarning = False
uvel, vvel = rot(uvel, vvel, ang)
### Apply Bulk Richardson number instability form of mixing (as in PWP) ###
if rb > 1e-5:
temp, sal, dens, uvel, vvel = bulk_mix(temp, sal, dens, uvel, vvel, g, rb, zlen, z, mld_idx)
### Do the gradient Richardson number instability form of mixing ###
if rg > 0:
temp, sal, dens, uvel, vvel = grad_mix(temp, sal, dens, uvel, vvel, dz, g, rg, zlen)
### Apply diffusion ###
if params['rkz'] > 0:
temp = diffus(params['dstab'], zlen, temp)
sal = diffus(params['dstab'], zlen, sal)
dens = sw.dens0(sal, temp)
uvel = diffus(params['dstab'], zlen, uvel)
vvel = diffus(params['dstab'], zlen, vvel)
### update output profile data ###
pwp_out['temp'][:, n] = temp
pwp_out['sal'][:, n] = sal
pwp_out['dens'][:, n] = dens
pwp_out['uvel'][:, n] = uvel
pwp_out['vvel'][:, n] = vvel
pwp_out['mld'][n] = mld
#do diagnostics
if diagnostics==1:
phf.livePlots(pwp_out, n)
return pwp_out
def absorb(beta1, beta2, zlen, dz):
# Compute solar radiation absorption profile. This
# subroutine assumes two wavelengths, and a double
# exponential depth dependence for absorption.
#
# Subscript 1 is for red, non-penetrating light, and
# 2 is for blue, penetrating light. rs1 is the fraction
# assumed to be red.
rs1 = 0.6
rs2 = 1.0-rs1
z1 = np.arange(0,zlen)*dz
z2 = z1 + dz
z1b1 = z1/beta1
z2b1 = z2/beta1
z1b2 = z1/beta2
z2b2 = z2/beta2
absrb = rs1*(np.exp(-z1b1)-np.exp(-z2b1))+rs2*(np.exp(-z1b2)-np.exp(-z2b2))
return absrb
def remove_si(t, s, d, u, v):
# Find and relieve static instability that may occur in the
# density array 'd'. This simulates free convection.
# ml_index is the index of the depth of the surface mixed layer after adjustment,
stat_unstable = True
while stat_unstable:
d_diff = np.diff(d)
if np.any(d_diff<0):
stat_unstable=True
first_inst_idx = np.flatnonzero(d_diff<0)[0]
d0 = d
(t, s, d, u, v) = mix5(t, s, d, u, v, first_inst_idx+1)
#plot density
# plt.figure(num=86)
# plt.clf() #probably redundant
# plt.plot(d0-1000, range(len(d0)), 'b-', label='pre-mix')
# plt.plot(d-1000, range(len(d0)), 'r-', label='post-mix')
# plt.gca().invert_yaxis()
# plt.xlabel('Density-1000 (kg/m3)')
# plt.grid(True)
# plt.pause(0.05)
# plt.show()
#debug_here()
else:
stat_unstable = False
return t, s, d, u, v
def mix5(t, s, d, u, v, j):
#This subroutine mixes the arrays t, s, u, v down to level j.
j = j+1 #so that the j-th layer is included in the mixing
t[:j] = np.mean(t[:j])
s[:j] = np.mean(s[:j])
d[:j] = sw.dens0(s[:j], t[:j])
u[:j] = np.mean(u[:j])
v[:j] = np.mean(v[:j])
return t, s, d, u, v
def rot(u, v, ang):
#This subroutine rotates the vector (u,v) through an angle, ang
r = (u+1j*v)*np.exp(1j*ang)
u = r.real
v = r.imag
return u, v
def bulk_mix(t, s, d, u, v, g, rb, nz, z, mld_idx):
#sub-routine to do bulk richardson mixing
rvc = rb #critical rich number??
for j in range(mld_idx, nz):
h = z[j]
#it looks like density and velocity are mixed from the surface down to the ML depth
dd = (d[j]-d[0])/d[0]
dv = (u[j]-u[0])**2+(v[j]-v[0])**2
if dv == 0:
rv = np.inf
else:
rv = g*h*dd/dv
if rv > rvc:
break
else:
t, s, d, u, v = mix5(t, s, d, u, v, j)
return t, s, d, u, v
def grad_mix(t, s, d, u, v, dz, g, rg, nz):
#copied from source script:
# % This function performs the gradeint Richardson Number relaxation
# % by mixing adjacent cells just enough to bring them to a new
# % Richardson Number.
# % Compute the gradeint Richardson Number, taking care to avoid dividing by
# % zero in the mixed layer. The numerical values of the minimum allowable
# % density and velocity differences are entirely arbitrary, and should not
# % effect the calculations (except that on some occasions they evidently have!)
#print "entered grad mix"
rc = rg #critical rich. number
j1 = 0
j2 = nz-1
j_range = np.arange(j1,j2)
i = 0 #loop count
#debug_here()
while 1:
#TODO: find a better way to do implement this loop
r = np.zeros(len(j_range))
for j in j_range:
dd = (d[j+1]-d[j])/d[j]
dv = (u[j+1]-u[j])**2+(v[j+1]-v[j])**2
if dv==0 or dv<1e-10:
r[j] = np.inf
else:
#compute grad. rich. number
r[j] = g*dz*dd/dv
#debug_here()
#find the smallest value of r in the profile
r_min = np.min(r)
j_min_idx = np.argmin(r)
#Check to see whether the smallest r is critical or not.
if r_min > rc:
break
#Mix the cells j_min_idx and j_min_idx+1 that had the smallest Richardson Number
t, s, d, u, v = stir(t, s, d, u, v, rc, r_min, j_min_idx)
#recompute the rich number over the part of the profile that has changed
j1 = j_min_idx-2
if j1 < 1:
j1 = 0
j2 = j_min_idx+2
if j2 > nz-1:
j2 = nz-1
i+=1
return t, s, d, u, v
def stir(t, s, d, u, v, rc, r, j):
#copied from source script:
# % This subroutine mixes cells j and j+1 just enough so that
# % the Richardson number after the mixing is brought up to
# % the value rnew. In order to have this mixing process
# % converge, rnew must exceed the critical value of the
# % richardson number where mixing is presumed to start. If
# % r critical = rc = 0.25 (the nominal value), and r = 0.20, then
# % rnew = 0.3 would be reasonable. If r were smaller, then a
# % larger value of rnew - rc is used to hasten convergence.
#
# % This subroutine was modified by JFP in Sep 93 to allow for an
# % aribtrary rc and to achieve faster convergence.
#TODO: This needs better commenting
rcon = 0.02+(rc-r)/2
rnew = rc+rcon/5.
f = 1-r/rnew
#mix temp
dt = (t[j+1]-t[j])*f/2.
t[j+1] = t[j+1]-dt
t[j] = t[j]+dt
#mix sal
ds = (s[j+1]-s[j])*f/2.
s[j+1] = s[j+1]-ds
s[j] = s[j]+ds
#recompute density
#d[j:j+1] = sw.dens0(s[j:j+1], t[j:j+1])
#have to be careful here. x[j:j+1] in python is not the same as x[[j,j+1]]. We want the latter
d[[j,j+1]] = sw.dens0(s[[j,j+1]], t[[j,j+1]])
du = (u[j+1]-u[j])*f/2
u[j+1] = u[j+1]-du
u[j] = u[j]+du
dv = (v[j+1]-v[j])*f/2
v[j+1] = v[j+1]-dv
v[j] = v[j]+dv
return t, s, d, u, v
def diffus(dstab,nz,a):
"finite difference implementation of diffusion equation"
#matlab code:
#a(2:nz-1) = a(2:nz-1) + dstab*(a(1:nz-2) - 2*a(2:nz-1) + a(3:nz));
a[1:nz-1] = a[1:nz-1] + dstab*(a[0:nz-2] - 2*a[1:nz-1] + a[2:nz])
return a
if __name__ == "__main__":
print("Running default test case using data from Beaufort gyre...")
forcing_fname = 'beaufort_met.nc'
prof_fname = 'beaufort_profile.nc'
print("Running Test Case 1 with data from Beaufort gyre...")
forcing, pwp_out = run(met_data=forcing_fname, prof_data=prof_fname, suffix='demo1_nodiff', save_plots=True, diagnostics=False)
print("----------------------------------------------------------------------------")
print("NOTE:\nSee run_demo1() and run_demo2() in PWP_helper.py for more examples.")
print("Additional details can be found here: https://github.com/earlew/pwp_python_00.")
print("----------------------------------------------------------------------------")