Skip to content

Latest commit

 

History

History
70 lines (51 loc) · 2.65 KB

README.md

File metadata and controls

70 lines (51 loc) · 2.65 KB

Data Augmentation using Pre-trained Transformer Models

This code is originally released from amazon-research package (https://github.com/amazon-research/transformers-data-augmentation) In the paper, we mentioned https://github.com/varinf/TransformersDataAugmentation url so we are providing a copy of the same code here.

Code associated with the Data Augmentation using Pre-trained Transformer Models paper

Code contains implementation of the following data augmentation methods

  • EDA (Baseline)
  • Backtranslation (Baseline)
  • CBERT (Baseline)
  • BERT Prepend (Our paper)
  • GPT-2 Prepend (Our paper)
  • BART Prepend (Our paper)

DataSets

In paper, we use three datasets from following resources

Low-data regime experiment setup

Run src/utils/download_and_prepare_datasets.sh file to prepare all datsets.
download_and_prepare_datasets.sh performs following steps

  1. Download data from github
  2. Replace numeric labels with text for STSA-2 and TREC dataset
  3. For a given dataset, creates 15 random splits of train and dev data.

Dependencies

To run this code, you need following dependencies

  • Pytorch 1.5
  • fairseq 0.9
  • transformers 2.9

How to run

To run data augmentation experiment for a given dataset, run bash script in scripts folder. For example, to run data augmentation on snips dataset,

  • run scripts/bart_snips_lower.sh for BART experiment
  • run scripts/bert_snips_lower.sh for rest of the data augmentation methods

How to cite

@inproceedings{kumar-etal-2020-data,
    title = "Data Augmentation using Pre-trained Transformer Models",
    author = "Kumar, Varun  and
      Choudhary, Ashutosh  and
      Cho, Eunah",
    booktitle = "Proceedings of the 2nd Workshop on Life-long Learning for Spoken Language Systems",
    month = dec,
    year = "2020",
    address = "Suzhou, China",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.lifelongnlp-1.3",
    pages = "18--26",
}

Contact

Please reachout to [email protected] for any questions related to this code.

License

This project is licensed under the Creative Common Attribution Non-Commercial 4.0 license.