-
Notifications
You must be signed in to change notification settings - Fork 4
/
VIOPipelineV2_SIMDepthFilter.m~
608 lines (425 loc) · 26.3 KB
/
VIOPipelineV2_SIMDepthFilter.m~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
function [T_wcam_estimated,T_wimu_estimated,T_wimu_gtsam, keyFrames] = VIOPipelineV2_SIMDepthFilter(K, T_camimu, imageMeasurements, imuData, pipelineOptions, noiseParams, xInit, g_w, T_wImu_GT, landmarks_w)
%VIOPIPELINE Run the Visual Inertial Odometry Pipeline
% K: camera intrinsics
% T_camimu: transformation from the imu to the camera frame
% imuData: struct with IMU data:
% imuData.timestamps: 1xN
% imuData.measAccel: 3xN
% imuData.measOmega: 3xN
% imuData.measOrient: 4xN (quaternion q_sw, with scalar in the
% 1st position. The world frame is defined as the N-E-Down ref.
% frame.
% imageMeasurements:
% array of imageMeasurement structs:
% imageMeasurements(i).timestamp
% imageMeasurements(i).pixelMeasurements (2xN)
% imageMeasurements(i).landmarkIds (Nx1)
% params:
% params.INIT_DISPARITY_THRESHOLD
% params.KF_DISPARITY_THRESHOLD
% params.MIN_FEATURE_MATCHES
import gtsam.*;
%===GTSAM INITIALIATION====%
currentPoseGlobal = Pose3(Rot3(rotmat_from_quat(xInit.q)), Point3(xInit.p)); % initial pose is the reference frame (navigation frame)
currentVelocityGlobal = LieVector(xInit.v);
currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
sigma_init_v = noiseModel.Isotropic.Sigma(3, 0.1);
sigma_init_b = noiseModel.Isotropic.Sigmas([noiseParams.sigma_ba; noiseParams.sigma_bg]);
sigma_between_b = [ noiseParams.sigma_ba ; noiseParams.sigma_bg ];
w_coriolis = [0;0;0];
% Solver object
isamParams = ISAM2Params;
isamParams.setRelinearizeSkip(1);
gnParams = ISAM2GaussNewtonParams;
%gnParams.setWildfireThreshold(1000);
isamParams.setOptimizationParams(gnParams);
isam = gtsam.ISAM2(isamParams);
newFactors = NonlinearFactorGraph;
newValues = Values;
%==========================%
invK = inv(K);
% Main loop
% Keep track of key frames and poses
referencePose = {};
%Key frame poses correspond to the first and second poses from which
%point clouds are triangulated (these must have sufficient disparity)
keyFrames = [];
keyFrame_i = 1;
initiliazationComplete = false;
% Main loop
% ==========================================================
% Sort all measurements by their timestamps, process measurements as if in
% real-time
%Extract image timestamps
imageTimestamps = zeros(1, length(imageMeasurements));
for i = 1:length(imageMeasurements)
imageTimestamps(i) = imageMeasurements(i).timestamp;
end
%All measurements are assigned a unique measurement ID based on their
%timestamp
numImageMeasurements = length(imageTimestamps);
numImuMeasurements = length(imuData.timestamps);
numMeasurements = numImuMeasurements + numImageMeasurements;
allTimestamps = [imageTimestamps imuData.timestamps];
[~,measIdsTimeSorted] = sort(allTimestamps); %Sort timestamps in ascending order
camMeasId = 0;
imuMeasId = 0;
%Initialize the state
xCorrected = xInit;
xDeadReckon = xInit;
%Initialize the history
%Initialize the history
R_wimu = rotmat_from_quat(xCorrected.q);
R_imuw = R_wimu';
p_imuw_w = xCorrected.p;
T_wimu_estimated = inv([R_imuw -R_imuw*p_imuw_w; 0 0 0 1]);
T_wcam_estimated = T_wimu_estimated*inv(T_camimu);
T_wimu_gtsam = [];
iter = 1;
%Keep track of landmarks that we see and insert into ISAM2
observedLandmarks = {};
depthFilterSeeds = {};
initializedLandmarkIds = [];
for measId = measIdsTimeSorted
% Which type of measurement is this?
if measId > numImageMeasurements
measType = 'IMU';
imuMeasId = measId - numImageMeasurements;
else
measType = 'Cam';
camMeasId = measId;
%continue;
end
% IMU Measurement
% ==========================================================
if strcmp(measType, 'IMU')
if pipelineOptions.verbose
disp(['Processing IMU Measurement. ID: ' num2str(imuMeasId)]);
end
%Calculate dt
if imuMeasId ~= numImuMeasurements
dt = imuData.timestamps(imuMeasId+1) - imuData.timestamps(imuMeasId);
end
%Extract the measurements
imuAccel = imuData.measAccel(:, imuMeasId);
imuOmega = imuData.measOmega(:, imuMeasId);
%Predict the next state
[xCorrected] = integrateIMU(xCorrected, imuAccel, imuOmega, dt, noiseParams, g_w);
[xDeadReckon] = integrateIMU(xDeadReckon, imuAccel, imuOmega, dt, noiseParams, g_w);
%=======GTSAM=========
%Integrate each measurement
currentSummarizedMeasurement.integrateMeasurement(imuAccel, imuOmega, dt);
%totalSummarizedMeasurement.integrateMeasurement([imuAccel(1); imuAccel(3); imuAccel(2)], imuOmega, dt);
%=====================
%Formulate matrices
R_wimu = rotmat_from_quat(xDeadReckon.q);
p_imuw_w = xDeadReckon.p;
%Keep track of the state
T_wimu_estimated(:,:, end+1) = [R_wimu p_imuw_w; 0 0 0 1];
% Camera Measurement
% ==========================================================
elseif strcmp(measType, 'Cam')
if pipelineOptions.verbose
disp(['Processing Camera Measurement. ID: ' num2str(camMeasId)]);
end
%Extract features (fake ones)
largeInt = 1329329;
keyPointPixels = imageMeasurements(camMeasId).pixelMeasurements;
keyPointIds = imageMeasurements(camMeasId).landmarkIds;
%The last IMU state based on integration (relative to the world)
T_wimu_int = [rotmat_from_quat(xCorrected.q) xCorrected.p; 0 0 0 1];
%If it's the first image, set the current pose to the initial
%keyFramePose
if camMeasId == 1
referencePose.allKeyPointPixels = keyPointPixels;
referencePose.T_wimu_int = T_wimu_int;
referencePose.T_wimu_opt = T_wimu_int;
referencePose.T_wcam_opt = T_wimu_int*inv(T_camimu);
referencePose.allLandmarkIds = keyPointIds;
% =========== GTSAM ============
% Initialization
currentPoseKey = symbol('x',1);
currentVelKey = symbol('v',1);
currentBiasKey = symbol('b',1);
%Initialize the state
newValues.insert(currentPoseKey, currentPoseGlobal);
newValues.insert(currentVelKey, currentVelocityGlobal);
newValues.insert(currentBiasKey, currentBias);
%Add constraints
%newFactors.add(PriorFactorPose3(currentPoseKey, currentPoseGlobal, sigma_init_x));
newFactors.add(NonlinearEqualityPose3(currentPoseKey, currentPoseGlobal));
newFactors.add(NonlinearEqualityLieVector(currentVelKey, currentVelocityGlobal));
newFactors.add(NonlinearEqualityConstantBias(currentBiasKey, currentBias));
%Prepare for IMU Integration
currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
currentBias, diag(noiseParams.sigma_a.^2), ...
diag(noiseParams.sigma_g.^2), 1e-16 * eye(3));
%Note: We cannot add landmark observations just yet because we
%cannot be sure that all landmarks will be observed from the
%next pose (if they are not, the system is underconstrained and ill-posed)
% ==============================
else
%The reference pose is either the last keyFrame or the initial pose
%depending on whether we are initialized or not
%Caculate the rotation matrix prior (relative to the last keyFrame or initial pose)]
%currentSummarizedMeasurement
%The odometry change
%T_rimu = inv(referencePose.T_wimu_opt)*T_wimu_int;
T_rimu = inv(referencePose.T_wimu_opt)*T_wimu_int;
T_rcam = T_camimu*T_rimu*inv(T_camimu);
R_rcam = T_rcam(1:3,1:3);
p_camr_r = homo2cart(T_rcam*[0 0 0 1]');
%Figure out the best feature matches between the current and
%keyFramePose frame (i.e. 'relative')
matchedRelIndices = simMatchFeatures(referencePose.allLandmarkIds, keyPointIds);
KLOldkeyPointPixels = referencePose.allKeyPointPixels(:, matchedRelIndices(:,1));
KLNewkeyPointPixels = keyPointPixels(:, matchedRelIndices(:,2));
%Recalculate the unit vectors
matchedReferenceUnitVectors = normalize(invK*cart2homo(KLOldkeyPointPixels));
matchedCurrentUnitVectors = normalize(invK*cart2homo(KLNewkeyPointPixels));
%matchedRefGTPoints = referencePose.landmarksGT_r(:, matchedRelIndices(:,1));
%matchedCurrGTPoints = imageMeasurements(camMeasId).landmark_c(:, matchedRelIndices(:,2));
matchedKeyPointIds = keyPointIds(matchedRelIndices(:,2), :);
%=======DO WE NEED A NEW KEYFRAME?=============
%Calculate disparity between the current frame the last keyFramePose
disparityMeasure = calcDisparity(KLOldkeyPointPixels, KLNewkeyPointPixels, R_rcam, K);
disp(['Disparity Measure: ' num2str(disparityMeasure)]);
if (disparityMeasure > pipelineOptions.kfDisparityThreshold)
disp(['Creating new keyframe: ' num2str(keyFrame_i)]);
%=========== GTSAM ===========
% At each non=IMU measurement we initialize a new node in the graph
currentPoseKey = symbol('x',keyFrame_i+1);
currentVelKey = symbol('v',keyFrame_i+1);
currentBiasKey = symbol('b',keyFrame_i+1);
%Important, we keep track of the optimized state and 'compose'
%odometry onto it!
currPose = Pose3(referencePose.T_wimu_opt*T_rimu);
% Summarize IMU data between the previous GPS measurement and now
newFactors.add(ImuFactor( ...
currentPoseKey-1, currentVelKey-1, ...
currentPoseKey, currentVelKey, ...
currentBiasKey, currentSummarizedMeasurement, g_w, w_coriolis));
%Prepare for IMU Integration
currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
currentBias, diag(noiseParams.sigma_a.^2), ...
diag(noiseParams.sigma_g.^2), 1e-16 * eye(3));
newFactors.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, imuBias.ConstantBias(zeros(3,1), zeros(3,1)), noiseModel.Diagonal.Sigmas(sqrt(40) * sigma_between_b)));
if ~initiliazationComplete
currentVelocityGlobal = LieVector(xCorrected.v);
end
newValues.insert(currentPoseKey, currPose);
newValues.insert(currentVelKey, currentVelocityGlobal);
newValues.insert(currentBiasKey, currentBias);
%=============================
% inlierIdx = findInliers(matchedReferenceUnitVectors, matchedCurrentUnitVectors, R_rcam, p_camr_r, KLNewkeyPointPixels, K, pipelineOptions);
if size(KLNewkeyPointPixels,2) > 3
[~, ~, newInlierPixels] = estimateGeometricTransform(KLOldkeyPointPixels', KLNewkeyPointPixels', 'similarity', 'MaxDistance', 1);
inlierIdx = find(ismember(KLNewkeyPointPixels',newInlierPixels, 'Rows')');
else
inlierIdx = [];
end
%
%inlierIdx = 1: size(KLNewkeyPointPixels,2);
%inlierIdx = [];
printf('%d inliers out of a total of %d matched keypoints', length(inlierIdx), size(KLOldkeyPointPixels,2));
matchedKeyPointIds = matchedKeyPointIds(inlierIdx, :);
matchedReferenceUnitVectors = matchedReferenceUnitVectors(:, inlierIdx);
matchedCurrentUnitVectors = matchedCurrentUnitVectors(:, inlierIdx);
% triangPoints_r = triangulate(matchedReferenceUnitVectors, matchedCurrentUnitVectors, R_rcam, p_camr_r);
% triangPoints_w = homo2cart(referencePose.T_wcam_opt*cart2homo(triangPoints_r));
%
%Extract the raw pixel measurements
matchedKeyPointsPixels = KLNewkeyPointPixels(:, inlierIdx);
matchedRefKeyPointsPixels = KLOldkeyPointPixels(:, inlierIdx);
printf(['--------- \n Matched ' num2str(length(inlierIdx)) ' old landmarks. ---------\n']);
%=========GTSAM==========
%Extract intrinsics
f_x = K(1,1);
f_y = K(2,2);
c_x = K(1,3);
c_y = K(2,3);
% Create realistic calibration and measurement noise model
% format: fx fy skew cx cy baseline
K_GTSAM = Cal3_S2(f_x, f_y, 0, c_x, c_y);
if pipelineOptions.useRobustMEst
mono_model_n_robust = noiseModel.Robust(noiseModel.mEstimator.Huber(pipelineOptions.mEstWeight), noiseModel.Isotropic.Sigma(2, pipelineOptions.obsNoiseSigma));
else
mono_model_n_robust = noiseModel.Isotropic.Sigma(2, pipelineOptions.obsNoiseSigma);
end
%====== NORMAL ISAM OPERATION =====
%For all initialized landmarks, add their observations
obsFromInitializedIds = intersect(matchedKeyPointIds, initializedLandmarkIds);
%Add all observation of the initialized landmarks
addObsNum = 0;
totalReproError = 0;
for kp_i = 1:length(obsFromInitializedIds)
kptId = obsFromInitializedIds(kp_i);
reprojectionError = calcReprojectionError(newValues.at(currentPoseKey).matrix, matchedKeyPointsPixels(:,matchedKeyPointIds==kptId), isamCurrentEstimate.at(kptId).vector, K, T_camimu);
if reprojectionError < 100
addObsNum = addObsNum + 1;
totalReproError = totalReproError + reprojectionError;
newFactors.add(GenericProjectionFactorCal3_S2(Point2(matchedKeyPointsPixels(:,matchedKeyPointIds==kptId)), noiseModel.Isotropic.Sigma(2, 10), currentPoseKey, kptId, K_GTSAM, Pose3(inv(T_camimu))));
end
end
printf('Added %d new observations (Mean Error: %.5f)', addObsNum, totalReproError/addObsNum);
%For all others, maintain the depth filter
%First remove all observations that have already been
%processed
unintializedIdx = ~ismember(matchedKeyPointIds, obsFromInitializedIds);
matchedKeyPointIds = matchedKeyPointIds(unintializedIdx, :);
matchedReferenceUnitVectors = matchedReferenceUnitVectors(:, unintializedIdx);
matchedCurrentUnitVectors = matchedCurrentUnitVectors(:, unintializedIdx);
matchedKeyPointsPixels = matchedKeyPointsPixels(:, unintializedIdx);
matchedRefKeyPointsPixels = matchedRefKeyPointsPixels(:, unintializedIdx);
%Compute the mean feature depths
featureDepths = computeDepths(inv(T_rcam), matchedReferenceUnitVectors, matchedCurrentUnitVectors);
meanDepth = mean(featureDepths);
T_camw = inv(currPose.matrix*inv(T_camimu));
landmarks_c = homo2cart(T_camw*cart2homo(landmarks_w));
%Initialize all seeds that are new observations
if ~isempty(observedLandmarks)
newObsIds = setdiff(matchedKeyPointIds, [observedLandmarks(:).id]);
else
newObsIds = matchedKeyPointIds;
end
for kpt_j = 1:length(newObsIds)
oli = length(observedLandmarks) + 1;
observedLandmarks(oli).id = newObsIds(kpt_j);
observedLandmarks(oli).poseKeys = [(currentPoseKey-1) currentPoseKey];
observedLandmarks(oli).pixelObs = [matchedRefKeyPointsPixels(:,matchedKeyPointIds==newObsIds(kpt_j)), matchedKeyPointsPixels(:,matchedKeyPointIds==newObsIds(kpt_j))];
observedLandmarks(oli).featVec = matchedReferenceUnitVectors(:,matchedKeyPointIds==newObsIds(kpt_j));
observedLandmarks(oli).simpleTriang = triangulate2(matchedReferenceUnitVectors(:,matchedKeyPointIds==newObsIds(kpt_j)), matchedCurrentUnitVectors(:,matchedKeyPointIds==newObsIds(kpt_j)), T_rcam(1:3,1:3), T_rcam(1:3,4));
dfi = length(depthFilterSeeds) + 1;
depthFilterSeeds(dfi).mu = 1/meanDepth;
depthFilterSeeds(dfi).sigma2 = 4/36;
depthFilterSeeds(dfi).a = 10;
depthFilterSeeds(dfi).b = 10;
depthFilterSeeds(dfi).z_range = 2;
depthFilterSeeds(dfi).id = newObsIds(kpt_j);
depthFilterSeeds(dfi).trueDepth = norm(landmarks_c(:,newObsIds(kpt_j)));
depthFilterSeeds(dfi).numObs = 1;
end
%Update all uninitialized keypoints
%uninitializedIds = setdiff(matchedKeyPointIds, initializedLandmarkIds);
for obs_i = 1:length(matchedKeyPointIds)
%Compute depth uncertainties
kptId = matchedKeyPointIds(obs_i);
firstSeenPoseKey = observedLandmarks([observedLandmarks(:).id] == kptId).poseKeys(1);
firstSeenFeatVec = observedLandmarks([observedLandmarks(:).id] == kptId).featVec;
%Keep track of observations
observedLandmarks([observedLandmarks(:).id] == kptId).poseKeys = [observedLandmarks([observedLandmarks(:).id] == kptId).poseKeys currentPoseKey];
observedLandmarks([observedLandmarks(:).id] == kptId).pixelObs = [observedLandmarks([observedLandmarks(:).id] == kptId).pixelObs matchedKeyPointsPixels(:,obs_i)];
%Check if we havent updated the state yet
%(happens on 2nd image)
if keyFrame_i == 1
T_camr_feat = T_camw*newValues.at(firstSeenPoseKey).matrix*inv(T_camimu);
else
T_camr_feat = T_camw*isamCurrentEstimate.at(firstSeenPoseKey).matrix*inv(T_camimu);
end
measFeatureDepth = computeDepths(T_camr_feat, firstSeenFeatVec, matchedCurrentUnitVectors(:, obs_i));
tau = computeTaus(T_camr_feat, matchedCurrentUnitVectors(:, obs_i),measFeatureDepth, K);
%tau = 1;
invTau = 0.5 * (1.0/max(0.0000001, measFeatureDepth-tau) - 1.0/(measFeatureDepth+tau));
%Update seeds with observations from the current
%image
currentSeedMask = [depthFilterSeeds(:).id] == kptId;
depthFilterSeeds(currentSeedMask) = updateSeeds(depthFilterSeeds(currentSeedMask), 1/measFeatureDepth, invTau^2);
end
%Delete all observations that don't have a current
%observation
expriredSeedIdx = [depthFilterSeeds(:).sigma2] < (1/1000)^2;
%Check for convergence
convergedSeedIdx = [depthFilterSeeds(:).sigma2] < (1/1000)^2;
convergedInvDepth = [depthFilterSeeds(convergedSeedIdx).mu];
convergedKptIds = [depthFilterSeeds(convergedSeedIdx).id];
convergedTrueDepths = [depthFilterSeeds(convergedSeedIdx).trueDepth];
convergedNumObs = [depthFilterSeeds(convergedSeedIdx).numObs];
if ~isempty(convergedNumObs)
printf('Mean number of observations before convergence: %.5f', mean(convergedNumObs));
end
%Insert all converged depth estimates as landmarks into
%the ISAM filter
meanEucError = 0;
meanEucErrorTri = 0;
meanDepthError = 0;
for kpt_i = 1:length(convergedKptIds)
kptId = convergedKptIds(kpt_i);
invD = convergedInvDepth(kpt_i);
ol = observedLandmarks([observedLandmarks(:).id] == kptId);
T_wcam = isamCurrentEstimate.at(ol.poseKeys(1)).matrix*inv(T_camimu);
kptLoc_w = homo2cart(T_wcam*cart2homo((1/invD)*ol.featVec));
kptLoc_w_tri = homo2cart(T_wcam*cart2homo(ol.simpleTriang));
meanEucError = meanEucError + norm(kptLoc_w - landmarks_w(:,kptId));
meanEucErrorTri = meanEucErrorTri + norm(kptLoc_w_tri - landmarks_w(:,kptId));
meanDepthError = meanDepthError + abs(1/invD - convergedTrueDepths(kpt_i));
%Insert keypoint into the filter
newValues.insert(kptId, Point3(kptLoc_w));
% for obs_i = 1:size(ol.pixelObs,2)
% newFactors.add(GenericProjectionFactorCal3_S2(Point2(ol.pixelObs(:, obs_i)), mono_model_n_robust, ol.poseKeys(obs_i), kptId, K_GTSAM, Pose3(inv(T_camimu))));
% end
%newFactors = addLandmarkObservations(newFactors, kptId, observedLandmarks);
newFactors.add(PriorFactorPoint3(kptId, Point3(kptLoc_w), noiseModel.Isotropic.Sigma(3, 0.25)));
initializedLandmarkIds = [initializedLandmarkIds kptId];
end
printf('Mean Euc. Error for %d landmarks inserted: %.5f', length(convergedKptIds), meanEucError/length(convergedKptIds));
printf('Mean Simple Triang Error: %.5f', meanEucErrorTri/length(convergedKptIds));
printf('Mean Depth Error: %.5f', meanDepthError/length(convergedKptIds));
%Delete all converged seeds
depthFilterSeeds(convergedSeedIdx) = [];
isam.update(newFactors, newValues);
isamCurrentEstimate = isam.calculateEstimate();
%Reset the new values
newFactors = NonlinearFactorGraph;
newValues = Values;
currentVelocityGlobal = isamCurrentEstimate.at(currentVelKey);
currentBias = isamCurrentEstimate.at(currentBiasKey);
currentPoseGlobal = isamCurrentEstimate.at(currentPoseKey);
currentPoseTemp = currentPoseGlobal.matrix;
xCorrected.p = currentPoseTemp(1:3,4);
xCorrected.q = quat_from_rotmat(currentPoseTemp(1:3, 1:3));
xCorrected.v = currentVelocityGlobal.vector; %Note velocity has to be in the reference frame!
xCorrected.b_a = currentBias.accelerometer;
xCorrected.b_g = currentBias.gyroscope;
%Plot the results
p_wimu_w = currentPoseGlobal.translation.vector;
p_wimu_w_int = T_wimu_estimated(1:3,4, end);
plot(p_wimu_w(1), p_wimu_w(2), 'g*');
plot(p_wimu_w_int(1), p_wimu_w_int(2), 'r*');
%set (gcf(), 'outerposition', [25 800, 560, 470])
hold on;
drawnow;
pause(0.01);
%Save keyframe
%Each keyframe requires:
% 1. Absolute rotation and translation information (i.e. pose)
% 2. Triangulated 3D points and associated descriptor vectors
keyFrames(keyFrame_i).imuMeasId = imuMeasId+1;
keyFrames(keyFrame_i).T_wimu_opt = currentPoseGlobal.matrix;
keyFrames(keyFrame_i).T_wimu_int = T_wimu_int;
keyFrames(keyFrame_i).T_wcam_opt = currentPoseGlobal.matrix*inv(T_camimu);
keyFrames(keyFrame_i).landmarkIds = matchedKeyPointIds; %Unique integer associated with a landmark
keyFrames(keyFrame_i).allKeyPointPixels = keyPointPixels;
keyFrames(keyFrame_i).allLandmarkIds = keyPointIds;
%Update the reference pose
referencePose = {};
referencePose = keyFrames(keyFrame_i);
keyFrame_i = keyFrame_i + 1;
end %if meanDisparity
end % if camMeasId == 1
end % strcmp(measType...)
iter = iter + 1;
end % for measId = ...
%Plot the landmark locations
lmError = zeros(1, length(initializedLandmarkIds));
for lm_i = 1:length(initializedLandmarkIds)
lmGTSAMpos = isamCurrentEstimate.at(initializedLandmarkIds(lm_i)).vector;
lmGTpos = landmarks_w(:,initializedLandmarkIds(lm_i));
lmError(lm_i) = norm(lmGTpos - lmGTSAMpos);
end
figure
hist(lmError, 50)
%Output the final estimate
for kf_i = 1:(keyFrame_i-1)
T_wimu_gtsam(:,:, kf_i) = isamCurrentEstimate.at(symbol('x', kf_i+1)).matrix;
end
end