-
Notifications
You must be signed in to change notification settings - Fork 5
/
selector_demo.py
115 lines (99 loc) · 4.17 KB
/
selector_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright (c) OpenMMLab. All rights reserved.
import asyncio
from argparse import ArgumentParser
from mmdet.apis import (async_inference_detector, inference_detector,
init_detector, show_result_pyplot)
import mmcv
import mmcv_custom # noqa: F401,F403
import mmdet_custom # noqa: F401,F403
import os.path as osp
import torch
from preprocess_img import preprocess_wo_normalize
from global_storage.global_storage import __global_storage__
from mmdet_custom.models.backbones.base.token_stat import select_stat, rescale_stat
__supported_models__ = ['DemoGumbelTwoStageDetector']
def parse_args():
parser = ArgumentParser()
parser.add_argument('img', help='Image file')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument('--out', type=str, default="demo", help='out dir')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--palette',
default='coco',
choices=['coco', 'voc', 'citys', 'random'],
help='Color palette used for visualization')
parser.add_argument(
'--score-thr', type=float, default=0.3, help='bbox score threshold')
parser.add_argument(
'--async-test',
action='store_true',
help='whether to set async options for async inference.')
args = parser.parse_args()
return args
def main(args):
# build the model from a config file and a checkpoint file
model = init_detector(args.config, args.checkpoint, device=args.device)
assert type(model).__name__ in __supported_models__
# test a single image
result = inference_detector(model, args.img)
mmcv.mkdir_or_exist(args.out)
out_file = osp.join(args.out, osp.basename(args.img))
# show the results
model.show_result(
args.img,
result,
score_thr=args.score_thr,
show=True,
bbox_color=args.palette,
text_color=(200, 200, 200),
mask_color=args.palette,
# out_file=out_file
)
from draw_functions import draw_selected_patches
assert len(__global_storage__) == 1
selectors = __global_storage__[0].squeeze(0) # (12, h, w)
import matplotlib.pyplot as plt
plt.imshow(selectors.sum(0).cpu(), cmap='hot', vmin=7, vmax=12)
plt.colorbar(fraction=0.030, pad=0.03)
plt.tick_params(axis='both', left=False, top=False, right=False, bottom=False, labelleft=False, labeltop=False,
labelright=False, labelbottom=False)
plt.savefig('demo/depth_map', bbox_inches='tight', pad_inches=0.02)
plt.show()
used_next_layer = torch.zeros_like(selectors)
for i in range(len(used_next_layer) - 1):
used_next_layer[i] = (1 - selectors[i]) * selectors[i + 1]
used_later_layers = torch.zeros_like(selectors)
for i in range(len(used_later_layers) -1):
used_later_layers[i] = torch.logical_and(~selectors[i].bool(), selectors[i+1:].sum(0)>=1).float()
tensor = preprocess_wo_normalize(model, args.img)
for i in range(selectors.shape[0]):
draw_selected_patches(tensor, selectors[i].view(-1),
used_next_layer[i].view(-1),
used_later_layers[i].view(-1),
name=f'demo/{i}.png')
print('Token Use Rate:')
for i in range(selectors.shape[0]):
print(f'{selectors[i].sum() / selectors.shape[1] / selectors.shape[2] * 100:.3f}%')
print(f'total use rate: {selectors.sum() / (selectors.shape[0] * selectors.shape[1] * selectors.shape[2]):.3f}')
async def async_main(args):
# build the model from a config file and a checkpoint file
model = init_detector(args.config, args.checkpoint, device=args.device)
# test a single image
tasks = asyncio.create_task(async_inference_detector(model, args.img))
result = await asyncio.gather(tasks)
# show the results
show_result_pyplot(
model,
args.img,
result[0],
palette=args.palette,
score_thr=args.score_thr)
if __name__ == '__main__':
args = parse_args()
if args.async_test:
asyncio.run(async_main(args))
else:
main(args)