Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Evan Kim Workshop #13

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
285 changes: 285 additions & 0 deletions SensorFusionUsingSyntheticRadarandVisionDataWorkshop.asv
Original file line number Diff line number Diff line change
@@ -0,0 +1,285 @@
% Define an empty scenario.
scenario = drivingScenario;
scenario.SampleTime = 0.01;

roadCenters = [0 0; 50 0; 100 0; 150 10; 250 20; 500 40];
road(scenario, roadCenters, 'lanes',lanespec(3));

roadcentersIntersecting = [250 -500; 250 -250; 250 -100; 250 0; 250 100; 250 250; 250 500];
road2(scenario, roadcentersIntersecting, 'lanes', lanespec(2));

% Create the ego vehicle that travels at 25 m/s along the road. Place the
% vehicle on the right lane by subtracting off half a lane width (1.8 m)
% from the centerline of the road.
egoCar = vehicle(scenario, 'ClassID', 1);
path(egoCar, roadCenters(2:end,:) - [0 4], 15); % On right lane

% Add a car behind of the ego vehicle
followingCar = vehicle(scenario, 'ClassID', 1);
path(followingCar, [25 0; roadCenters(2:end,:)] - [0 4], 15); % On right lane

% Add a car that travels at 25 m/s along the road and passes the ego vehicle
% Designed so that the car that is passing narrowly buts of the egocar
passingCar = vehicle(scenario, 'ClassID', 1);
% waypoints uses a N by 2 Matrix to naviagate around the ego vehicle
waypoints = [0 -4; 50 .4; 100 .6; 150 7.2; 250 17.2; 500 37.2];
path(passingCar, waypoints, 25);

% Added a car in the left lane
leftCar = vehicle(scenario, 'ClassID', 1);
path(leftCar, [25 0; roadCenters(2:end,:)] + [0, 4], 20);

% Added a few cars driving perpendicular to the main road on road2

intersectionCar = vehicle(scenario, 'ClassID', 1);
path(intersectionCar,



sensors = cell(10,1);
% Front-facing long-range radar sensor at the center of the front bumper of the car.
sensors{1} = radarDetectionGenerator('SensorIndex', 1, 'Height', 0.2, 'MaxRange', 225, ...
'SensorLocation', [egoCar.Wheelbase + egoCar.FrontOverhang, 0], 'FieldOfView', [30, 8]);

% Rear-facing long-range radar sensor at the center of the rear bumper of the car.
sensors{2} = radarDetectionGenerator('SensorIndex', 2, 'Height', 0.2, 'Yaw', 180, ...
'SensorLocation', [-egoCar.RearOverhang, 0], 'MaxRange', 225, 'FieldOfView', [30, 8]);

% Rear-left-facing short-range radar sensor at the left rear wheel well of the car.
sensors{3} = radarDetectionGenerator('SensorIndex', 3, 'Height', 0.2, 'Yaw', 127, ...
'SensorLocation', [0, egoCar.Width/2], 'MaxRange', 25, 'ReferenceRange', 50, ...
'FieldOfView', [82, 5], 'AzimuthResolution', 10, 'RangeResolution', 1.25);

% Rear-right-facing short-range radar sensor at the right rear wheel well of the car.
sensors{4} = radarDetectionGenerator('SensorIndex', 4, 'Height', 0.2, 'Yaw', -127, ...
'SensorLocation', [0, -egoCar.Width/2], 'MaxRange', 25, 'ReferenceRange', 50, ...
'FieldOfView', [82, 5], 'AzimuthResolution', 10, 'RangeResolution', 1.25);

% Front-left-facing short-range radar sensor at the left front wheel well of the car.
sensors{5} = radarDetectionGenerator('SensorIndex', 5, 'Height', 0.2, 'Yaw', 52, ...
'SensorLocation', [egoCar.Wheelbase/2.5, egoCar.Width/2], 'MaxRange', 25, ...
'ReferenceRange', 50, 'FieldOfView', [80, 5], 'AzimuthResolution', 10, ...
'RangeResolution', 1.25);

% Front-right-facing short-range radar sensor at the right front wheel well of the car.
sensors{6} = radarDetectionGenerator('SensorIndex', 6, 'Height', 0.2, 'Yaw', -52, ...
'SensorLocation', [egoCar.Wheelbase/2.5, -egoCar.Width/2], 'MaxRange', 25, ...
'ReferenceRange', 50, 'FieldOfView', [80, 5], 'AzimuthResolution', 10, ...
'RangeResolution', 1.25);

% Front-right camera located at front windshield.
sensors{7} = visionDetectionGenerator('SensorIndex', 7, 'FalsePositivesPerImage', 0.1, ...
'SensorLocation', [0.75*egoCar.Wheelbase 0], 'Height', 1.5, 'Yaw', -22);

% Front-left camera located at rear windshield.
sensors{8} = visionDetectionGenerator('SensorIndex', 8, 'FalsePositivesPerImage', 0.1, ...
'SensorLocation', [0.2*egoCar.Wheelbase 0], 'Height', 1.5, 'Yaw', 22);

% Back-left camera
sensors{9} = visionDetectionGenerator('SensorIndex', 8, 'FalsePositivesPerImage', 0.1, ...
'SensorLocation', [0.5*egoCar.Wheelbase 0], 'Height', 1.5, 'Yaw', 158);

% Back-right camera
sensors{10} = visionDetectionGenerator('SensorIndex', 8, 'FalsePositivesPerImage', 0.1, ...
'SensorLocation', [0.5*egoCar.Wheelbase 0], 'Height', 1.5, 'Yaw', 202);

% Initiate the tracker
tracker = multiObjectTracker('FilterInitializationFcn', @initSimDemoFilter, ...
'AssignmentThreshold', 30, 'ConfirmationParameters', [4 5]);
positionSelector = [1 0 0 0; 0 0 1 0]; % Position selector
velocitySelector = [0 1 0 0; 0 0 0 1]; % Velocity selector

% Create the display and return a handle to the bird's-eye plot
BEP = createDemoDisplay(egoCar, sensors);

toSnap = true;
while advance(scenario) && ishghandle(BEP.Parent)
% Get the scenario time
time = scenario.SimulationTime;

% Get the position of the other vehicle in ego vehicle coordinates
ta = targetPoses(egoCar);

% Simulate the sensors
detections = {};
isValidTime = false(1,8);
for i = 1:8
[sensorDets,numValidDets,isValidTime(i)] = sensors{i}(ta, time);
if numValidDets
for j = 1:numValidDets
% Vision detections do not report SNR. The tracker requires
% that they have the same object attributes as the radar
% detections. This adds the SNR object attribute to vision
% detections and sets it to a NaN.
if ~isfield(sensorDets{j}.ObjectAttributes{1}, 'SNR')
sensorDets{j}.ObjectAttributes{1}.SNR = NaN;
end
end
detections = [detections; sensorDets]; %#ok<AGROW>
end
end

% Update the tracker if there are new detections
if any(isValidTime)
vehicleLength = sensors{1}.ActorProfiles.Length;
detectionClusters = clusterDetections(detections, vehicleLength);
confirmedTracks = updateTracks(tracker, detectionClusters, time);

% Update bird's-eye plot
updateBEP(BEP, egoCar, detections, confirmedTracks, positionSelector, velocitySelector);
end

% Snap a figure for the document when the car passes the ego vehicle
if ta(1).Position(1) > 0 && toSnap
toSnap = false;
snapnow
end
end

function filter = initSimDemoFilter(detection)
% Use a 2-D constant velocity model to initialize a trackingKF filter.
% The state vector is [x;vx;y;vy]
% The detection measurement vector is [x;y;vx;vy]
% As a result, the measurement model is H = [1 0 0 0; 0 0 1 0; 0 1 0 0; 0 0 0 1]
H = [1 0 0 0; 0 0 1 0; 0 1 0 0; 0 0 0 1];
filter = trackingKF('MotionModel', '2D Constant Velocity', ...
'State', H' * detection.Measurement, ...
'MeasurementModel', H, ...
'StateCovariance', H' * detection.MeasurementNoise * H, ...
'MeasurementNoise', detection.MeasurementNoise);
end

function detectionClusters = clusterDetections(detections, vehicleSize)
N = numel(detections);
distances = zeros(N);
for i = 1:N
for j = i+1:N
if detections{i}.SensorIndex == detections{j}.SensorIndex
distances(i,j) = norm(detections{i}.Measurement(1:2) - detections{j}.Measurement(1:2));
else
distances(i,j) = inf;
end
end
end
leftToCheck = 1:N;
i = 0;
detectionClusters = cell(N,1);
while ~isempty(leftToCheck)
% Remove the detections that are in the same cluster as the one under
% consideration
underConsideration = leftToCheck(1);
clusterInds = (distances(underConsideration, leftToCheck) < vehicleSize);
detInds = leftToCheck(clusterInds);
clusterDets = [detections{detInds}];
clusterMeas = [clusterDets.Measurement];
meas = mean(clusterMeas, 2);
meas2D = [meas(1:2);meas(4:5)];
i = i + 1;
detectionClusters{i} = detections{detInds(1)};
detectionClusters{i}.Measurement = meas2D;
leftToCheck(clusterInds) = [];
end
detectionClusters(i+1:end) = [];

% Since the detections are now for clusters, modify the noise to represent
% that they are of the whole car
for i = 1:numel(detectionClusters)
measNoise(1:2,1:2) = vehicleSize^2 * eye(2);
measNoise(3:4,3:4) = eye(2) * 100 * vehicleSize^2;
detectionClusters{i}.MeasurementNoise = measNoise;
end
end

function BEP = createDemoDisplay(egoCar, sensors)
% Make a figure
hFigure = figure('Position', [0, 0, 1200, 640], 'Name', 'Sensor Fusion with Synthetic Data Example');
movegui(hFigure, [0 -1]); % Moves the figure to the left and a little down from the top

% Add a car plot that follows the ego vehicle from behind
hCarViewPanel = uipanel(hFigure, 'Position', [0 0 0.5 0.5], 'Title', 'Chase Camera View');
hCarPlot = axes(hCarViewPanel);
chasePlot(egoCar, 'Parent', hCarPlot);

% Add a car plot that follows the ego vehicle from a top view
hTopViewPanel = uipanel(hFigure, 'Position', [0 0.5 0.5 0.5], 'Title', 'Top View');
hCarPlot = axes(hTopViewPanel);
chasePlot(egoCar, 'Parent', hCarPlot, 'ViewHeight', 130, 'ViewLocation', [0 0], 'ViewPitch', 90);

% Add a panel for a bird's-eye plot
hBEVPanel = uipanel(hFigure, 'Position', [0.5 0 0.5 1], 'Title', 'Bird''s-Eye Plot');

% Create bird's-eye plot for the ego car and sensor coverage
hBEVPlot = axes(hBEVPanel);
frontBackLim = 60;
BEP = birdsEyePlot('Parent', hBEVPlot, 'Xlimits', [-frontBackLim frontBackLim], 'Ylimits', [-35 35]);

% Plot the coverage areas for radars
for i = 1:6
cap = coverageAreaPlotter(BEP,'FaceColor','red','EdgeColor','red');
plotCoverageArea(cap, sensors{i}.SensorLocation,...
sensors{i}.MaxRange, sensors{i}.Yaw, sensors{i}.FieldOfView(1));
end

% Plot the coverage areas for vision sensors
for i = 7:8
cap = coverageAreaPlotter(BEP,'FaceColor','blue','EdgeColor','blue');
plotCoverageArea(cap, sensors{i}.SensorLocation,...
sensors{i}.MaxRange, sensors{i}.Yaw, 45);
end

% Plot the coverage areas for added vision sensors in rear
for i = 9:10
cap = coverageAreaPlotter(BEP,'FaceColor','green','EdgeColor','green');
plotCoverageArea(cap, sensors{i}.SensorLocation,...
sensors{i}.MaxRange, sensors{i}.Yaw, 90);
end

% Create a vision detection plotter put it in a struct for future use
detectionPlotter(BEP, 'DisplayName','vision', 'MarkerEdgeColor','blue', 'Marker','^');

% Combine all radar detections into one entry and store it for later update
detectionPlotter(BEP, 'DisplayName','radar', 'MarkerEdgeColor','red');

% Add road borders to plot
laneMarkingPlotter(BEP, 'DisplayName','lane markings');

% Add the tracks to the bird's-eye plot. Show last 10 track updates.
trackPlotter(BEP, 'DisplayName','track', 'HistoryDepth',10);

axis(BEP.Parent, 'equal');
xlim(BEP.Parent, [-frontBackLim frontBackLim]);
ylim(BEP.Parent, [-40 40]);

% Add an outline plotter for ground truth
outlinePlotter(BEP, 'Tag', 'Ground truth');
end

function updateBEP(BEP, egoCar, detections, confirmedTracks, psel, vsel)
% Update road boundaries and their display
[lmv, lmf] = laneMarkingVertices(egoCar);
plotLaneMarking(findPlotter(BEP,'DisplayName','lane markings'),lmv,lmf);

% update ground truth data
[position, yaw, length, width, originOffset, color] = targetOutlines(egoCar);
plotOutline(findPlotter(BEP,'Tag','Ground truth'), position, yaw, length, width, 'OriginOffset', originOffset, 'Color', color);

% Prepare and update detections display
N = numel(detections);
detPos = zeros(N,2);
isRadar = true(N,1);
for i = 1:N
detPos(i,:) = detections{i}.Measurement(1:2)';
if detections{i}.SensorIndex > 6 % Vision detections
isRadar(i) = false;
end
end
plotDetection(findPlotter(BEP,'DisplayName','vision'), detPos(~isRadar,:));
plotDetection(findPlotter(BEP,'DisplayName','radar'), detPos(isRadar,:));

% Prepare and update tracks display
trackIDs = {confirmedTracks.TrackID};
labels = cellfun(@num2str, trackIDs, 'UniformOutput', false);
[tracksPos, tracksCov] = getTrackPositions(confirmedTracks, psel);
tracksVel = getTrackVelocities(confirmedTracks, vsel);
plotTrack(findPlotter(BEP,'DisplayName','track'), tracksPos, tracksVel, tracksCov, labels);
end
Loading