Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add better Clenshaw #29

Open
ianhbell opened this issue Jan 12, 2021 · 3 comments
Open

Add better Clenshaw #29

ianhbell opened this issue Jan 12, 2021 · 3 comments

Comments

@ianhbell
Copy link
Collaborator

See chebfun's implementation: https://github.com/chebfun/chebfun/blob/master/%40chebtech/clenshaw.m

@ianhbell
Copy link
Collaborator Author

This is not so much faster:

template<int Norder, typename VecType>
double y_Clenshaw_x2_paired(const double x, const VecType& c, const double xmin, const double xmax) {
    auto xscaled2 = (2 * x - (xmax + xmin)) / (xmax - xmin) * 2.0; // x*2
    double u_kp1 = 0, u_kp2 = 0;
    for (int k = Norder; k >= 2; k -= 2) {
        // Do the recurrent calculation
        u_kp2 = c[k] + xscaled2 * u_kp1 - u_kp2;
        u_kp1 = c[k-1] + xscaled2 * u_kp2 - u_kp1;
    }
    if (Norder % 2) {
        auto tmp = u_kp1;
        u_kp1 = c[1] + xscaled2 * u_kp1 - u_kp2;
        u_kp2 = tmp;
    }
    return c[0] + 0.5*xscaled2*u_kp1 - u_kp2;
}

@jowr
Copy link

jowr commented Jan 13, 2021

I have used this code and I recall getting a substantial increase in speed for fixed size polynomials:

template<typename T>
T T0(const T& x) {
	return 1.0;
};

template<> inline
Eigen::ArrayXd T0(const Eigen::ArrayXd& x) {
Eigen::ArrayXd res;
res.resizeLike(x);
res.setConstant(1.0);
return res;
};

template<typename T>
T T1(const T& x) {
	return x;
};

template<typename T>
T T2(const T& x) {
	return (2.0 * x*x) - 1.0;
};

template<typename T>
T Tn(std::size_t n, const T& x) {
	if (n == 0) return T0(x);
	else if (n == 1) return T1(x);
	else if (n == 2) return T2(x);

	//Potentially faster than the recursive version
	//return (2.0 * x * Tn(n - 1, x)) - Tn(n - 2, x);

	T tnm1 = T2(x);
	T tnm2 = T1(x);
	T tn = tnm1;

	for (std::size_t l = 3; l < n + 1; l++) {
		tn = (2.0 * x * tnm1) - tnm2;
		tnm2 = tnm1;
		tnm1 = tn;
	}

	return tn;
};

template<typename T>
void Tn_series(int n, const T& x, Eigen::Array<T, Eigen::Dynamic, 1>& res) {
	res.resize(0);
	if (n < 0) return;
	res.resize(n + 1);

	res(0, 0) = T0(x);
	if (n == 0) return;

	res(1, 0) = T1(x);
	if (n == 1) return;

	res(2, 0) = T2(x);
	if (n == 2) return;

	//Potentially faster than the recursive version
	//return (2.0 * x * Tn(n - 1, x)) - Tn(n - 2, x);

	T tnm1 = res(2, 0);
	T tnm2 = res(1, 0);
	T tn = tnm1;

	for (int i = 3; i < n + 1; i++) {
		tn = (2.0 * x * tnm1) - tnm2;
		tnm2 = tnm1;
		tnm1 = tn;
		res(i, 0) = tn;
	}

	return;
};

template<typename T>
void Tn_series(int n, const Eigen::Array<T, Eigen::Dynamic, 1>& x, Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>& res) {
	res.resize(0, 0);
	if (n < 0) return;
	try {
		res.resize(x.rows(), n + 1);
	} catch (...) {
		res.resize(0, 0);
		return;
	}

	res.col(0) = T0(x);
	if (n == 0) return;

	res.col(1) = T1(x);
	if (n == 1) return;

	res.col(2) = T2(x);
	if (n == 2) return;

	//Potentially faster than the recursive version
	//res.col(i) = (2.0 * x * Tn(n - 1, x)) - Tn(n - 2, x);

	Eigen::Array<T, Eigen::Dynamic, 1> tnm1 = res.col(2);
	Eigen::Array<T, Eigen::Dynamic, 1> tnm2 = res.col(1);
	Eigen::Array<T, Eigen::Dynamic, 1> tn = tnm1;

	for (int i = 3; i < n + 1; i++) {
		tn = (2.0 * x * tnm1) - tnm2;
		tnm2 = tnm1;
		tnm1 = tn;
		res.col(i) = tn;
	}
	return;
};

The actual calculation was embedded in a class, but you get the idea from this:

virtual const ErrCodes _evaluate_matrix(const double& x_, double& y) const {
    if (_coeffs.rows() <  1) { y = NAN; return error; }
    if (_coeffs.cols() != 1) { y = NAN; return error; }
    //if (x_ < -1) { y = NAN; return error; }
    //if (x_ >  1) { y = NAN; return error; }

    const double x = (x_ - _x_start - _x_halfwidth) / _x_halfwidth;
    const int x_degree = _coeffs.rows() - 1;

    ObservationType res;
    Tn_series(x_degree, x, res);
    y = (res*_coeffs).sum();
    return noError;
}

const ErrCodes _evaluate_matrix(const ObservationType& x_, ObservationType& y) const {
    if (_coeffs.rows() <  1) { y.setConstant(NAN); return error; }
    if (_coeffs.cols() != 1) { y.setConstant(NAN); return error; }
    //if ((x < -1).any()) { y.setConstant(NAN); return error; }
    //if ((x > 1).any()) { y.setConstant(NAN); return error; }

    try {
        y.resizeLike(x_);
        y.setConstant(NAN);
    } catch (...) {
        y.resize(0, 1);
        return error;
    }

    const ObservationType x = (x_ - _x_start - _x_halfwidth) / _x_halfwidth;
    const int x_degree = _coeffs.rows() - 1;

    CoefficientType x_res;
    Tn_series(x_degree, x, x_res);

    //y = x_res.matrix() * _coeffs.matrix();
    for (int i = 0; i < x_res.rows(); i++) {
        y(i) = (x_res.row(i) * _coeffs.transpose()).sum();
    }
    return noError;
}

@ianhbell
Copy link
Collaborator Author

I think the point here is that the bonus you get is a consequence of the fact that you are leveraging parallelism at the level of matrix x vector products, a place where Eigen has been extensively optimized. If you were to do a single input, I expect you would see a penalty due to the fact that you have the additional array overhead.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants