forked from aimacode/aima-julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mdp.jl
310 lines (267 loc) · 12.3 KB
/
mdp.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
export AbstractMarkovDecisionProcess, MarkovDecisionProcess,
reward, transition_model, actions,
GridMarkovDecisionProcess, go_to, show_grid, to_arrows,
value_iteration, expected_utility, optimal_policy,
policy_evaluation, policy_iteration;
abstract type AbstractMarkovDecisionProcess end;
#=
MarkovDecisionProcess is a MDP implementation of AbstractMarkovDecisionProcess.
A Markov decision process is a sequential decision problem with fully observable
and stochastic environment with a transition model and rewards function.
The discount factor (gamma variable) describes the preference for current rewards
over future rewards.
=#
struct MarkovDecisionProcess{T} <: AbstractMarkovDecisionProcess
initial::T
states::Set{T}
actions::Set{T}
terminal_states::Set{T}
transitions::Dict
gamma::Float64
reward::Dict
function MarkovDecisionProcess{T}(initial::T, actions_list::Set{T}, terminal_states::Set{T}, transitions::Dict, states::Union{Nothing, Set{T}}, gamma::Float64) where T
if (!(0 < gamma <= 1))
error("MarkovDecisionProcess(): The gamma variable of an MDP must be between 0 and 1, the constructor was given ", gamma, "!");
end
local new_states::Set{typeof(initial)};
if (typeof(states) <: Set)
new_states = states;
else
new_states = Set{typeof(initial)}();
end
return new(initial, new_states, actions_list, terminal_states, transitions, gamma, Dict());
end
end
MarkovDecisionProcess(initial, actions_list::Set, terminal_states::Set, transitions::Dict; states::Union{Nothing, Set}=nothing, gamma::Float64=0.9) = MarkovDecisionProcess{typeof(initial)}(initial, actions_list, terminal_states, transitions, states, gamma);
"""
reward(mdp::T, state) where {T <: AbstractMarkovDecisionProcess}
Return a reward based on the given 'state'.
"""
function reward(mdp::T, state) where {T <: AbstractMarkovDecisionProcess}
return mdp.reward[state];
end
"""
transition_model(mdp::T, state, action) where {T <: AbstractMarkovDecisionProcess}
Return a list of (P(s'|s, a), s') pairs given the state 's' and action 'a'.
"""
function transition_model(mdp::T, state, action) where {T <: AbstractMarkovDecisionProcess}
if (length(mdp.transitions) == 0)
error("transition_model(): The transition model for the given 'mdp' could not be found!");
else
return mdp.transitions[state][action];
end
end
"""
actions(mdp::T, state) where {T <: AbstractMarkovDecisionProcess}
Return a set of actions that are possible in the given state.
"""
function actions(mdp::T, state) where {T <: AbstractMarkovDecisionProcess}
if (state in mdp.terminal_states)
return Set{Nothing}([nothing]);
else
return mdp.actions;
end
end
#=
GridMarkovDecisionProcess is a two-dimensional environment MDP implementation
of AbstractMarkovDecisionProcess. Obstacles in the environment are represented
by a null.
=#
struct GridMarkovDecisionProcess <: AbstractMarkovDecisionProcess
initial::Tuple{Int64, Int64}
states::Set{Tuple{Int64, Int64}}
actions::Set{Tuple{Int64, Int64}}
terminal_states::Set{Tuple{Int64, Int64}}
grid::Array{Union{Nothing, Float64}, 2}
gamma::Float64
reward::Dict
function GridMarkovDecisionProcess(initial::Tuple{Int64, Int64}, terminal_states::Set{Tuple{Int64, Int64}}, grid::Array{Union{Nothing, Float64}, 2}; states::Union{Nothing, Set{Tuple{Int64, Int64}}}=nothing, gamma::Float64=0.9)
if (!(0 < gamma <= 1))
error("GridMarkovDecisionProcess(): The gamma variable of an MDP must be between 0 and 1, the constructor was given ", gamma, "!");
end
local new_states::Set{Tuple{Int64, Int64}};
if (typeof(states) <: Set)
new_states = states;
else
new_states = Set{Tuple{Int64, Int64}}();
end
local orientations::Set = Set{Tuple{Int64, Int64}}([(1, 0), (0, 1), (-1, 0), (0, -1)]);
local reward::Dict = Dict();
for i in 1:getindex(size(grid), 1)
for j in 1:getindex(size(grid, 2))
reward[(i, j)] = grid[i, j]
if (!(grid[i, j] === nothing))
push!(new_states, (i, j));
end
end
end
return new(initial, new_states, orientations, terminal_states, grid, gamma, reward);
end
end
"""
go_to(gmdp::GridMarkovDecisionProcess, state::Tuple{Int64, Int64}, direction::Tuple{Int64, Int64})
Return the next state given the current state and direction.
"""
function go_to(gmdp::GridMarkovDecisionProcess, state::Tuple{Int64, Int64}, direction::Tuple{Int64, Int64})
local next_state::Tuple{Int64, Int64} = map(+, state, direction);
if (next_state in gmdp.states)
return next_state;
else
return state;
end
end
function transition_model(gmdp::GridMarkovDecisionProcess, state::Tuple{Int64, Int64}, action::Nothing)
return [(0.0, state)];
end
function transition_model(gmdp::GridMarkovDecisionProcess, state::Tuple{Int64, Int64}, action::Tuple{Int64, Int64})
return [(0.8, go_to(gmdp, state, action)),
(0.1, go_to(gmdp, state, utils.turn_heading(action, -1))),
(0.1, go_to(gmdp, state, utils.turn_heading(action, 1)))];
end
function show_grid(gmdp::GridMarkovDecisionProcess, mapping::Dict)
local grid::Array{Union{Nothing, String}, 2};
local rows::AbstractVector = [];
for i in 1:getindex(size(gmdp.grid), 1)
local row::Array{Union{Nothing, String}, 1} = Array{Union{Nothing, String}, 1}();
for j in 1:getindex(size(gmdp.grid), 2)
push!(row, get(mapping, (i, j), nothing));
end
push!(rows, reshape(row, (1, length(row))));
end
grid = reduce(vcat, rows);
return grid;
end
# (0, 1) will move the agent rightward.
# (-1, 0) will move the agent upward.
# (0, -1) will move the agent leftward.
# (1, 0) will move the agent downward.
function to_arrows(gmdp::GridMarkovDecisionProcess, policy::Dict)
local arrow_characters::Dict = Dict([Pair((0, 1), ">"),
Pair((-1, 0), "^"),
Pair((0, -1), "<"),
Pair((1, 0), "v"),
Pair(nothing, ".")]);
return show_grid(gmdp, Dict(collect(Pair(state, arrow_characters[action])
for (state, action) in policy)));
end
# An example sequential decision problem (Fig. 17.1a) where an agent does not
# terminate until it reaches a terminal state in the 4x3 environment (Fig. 17.1a).
#
# Matrices in Julia start from the upper-left corner and index (1, 1).
sequential_decision_environment = GridMarkovDecisionProcess((1, 1),
Set([(2, 4), (3, 4)]),
[-0.04 -0.04 -0.04 -0.04;
-0.04 nothing -0.04 -1;
-0.04 -0.04 -0.04 +1]);
"""
value_iteration(mdp::T; epsilon::Float64=0.001) where {T <: AbstractMarkovDecisionProcess}
Return the utilities of the MDP's states as a Dict by applying the value iteration algorithm (Fig. 17.4)
on the given Markov decision process 'mdp' and a arbitarily small positive number 'epsilon'.
"""
function value_iteration(mdp::T; epsilon::Float64=0.001) where {T <: AbstractMarkovDecisionProcess}
local U_prime::Dict = Dict(collect(Pair(state, 0.0) for state in mdp.states));
while (true)
local U::Dict = copy(U_prime);
local delta::Float64 = 0.0;
for state in mdp.states
U_prime[state] = (reward(mdp, state)
+ (mdp.gamma
* max((sum(collect(p * U[state_prime]
for (p, state_prime) in transition_model(mdp, state, action)))
for action in actions(mdp, state))...)));
delta = max(delta, abs(U_prime[state] - U[state]));
end
if (delta < ((epsilon * (1 - mdp.gamma))/mdp.gamma))
return U;
end
end
end
function value_iteration(gmdp::GridMarkovDecisionProcess; epsilon::Float64=0.001)
local U_prime::Dict = Dict(collect(Pair(state, 0.0) for state in gmdp.states));
while (true)
local U::Dict = copy(U_prime);
local delta::Float64 = 0.0;
for state in gmdp.states
U_prime[state] = (reward(gmdp, state)
+ (gmdp.gamma
* max((sum(collect(p * U[state_prime]
for (p, state_prime) in transition_model(gmdp, state, action)))
for action in actions(gmdp, state))...)));
delta = max(delta, abs(U_prime[state] - U[state]));
end
if (delta < ((epsilon * (1 - gmdp.gamma))/gmdp.gamma))
return U;
end
end
end
function expected_utility(mdp::T, U::Dict, state::Tuple{Int64, Int64}, action::Tuple{Int64, Int64}) where {T <: AbstractMarkovDecisionProcess}
return sum((p * U[state_prime] for (p, state_prime) in transition_model(mdp, state, action)));
end
function expected_utility(mdp::T, U::Dict, state::Tuple{Int64, Int64}, action::Nothing) where {T <: AbstractMarkovDecisionProcess}
return sum((p * U[state_prime] for (p, state_prime) in transition_model(mdp, state, action)));
end
"""
optimal_policy(mdp::T, U::Dict) where {T <: AbstractMarkovDecisionProcess}
Return the optimal_policy 'π*(s)' (Equation 17.4) given the Markov decision process 'mdp'
and the utility function 'U'.
"""
function optimal_policy(mdp::T, U::Dict) where {T <: AbstractMarkovDecisionProcess}
local pi::Dict = Dict();
for state in mdp.states
pi[state] = argmax(collect(actions(mdp, state)), (function(action::Union{Nothing, Tuple{Int64, Int64}})
return expected_utility(mdp, U, state, action);
end));
end
return pi;
end
"""
policy_evaluation(pi::Dict, U::Dict, mdp::T; k::Int64=20) where {T <: AbstractMarkovDecisionProcess}
Return the updated utilities of the MDP's states by applying the modified policy iteration
algorithm on the given Markov decision process 'mdp', utility function 'U', policy 'pi',
and number of Bellman updates to use 'k'.
"""
function policy_evaluation(pi::Dict, U::Dict, mdp::T; k::Int64=20) where {T <: AbstractMarkovDecisionProcess}
for i in 1:k
for state in mdp.states
U[state] = (reward(mdp, state)
+ (mdp.gamma
* sum((p * U[state_prime] for (p, state_prime) in transition_model(mdp, state, pi[state])))));
end
end
return U;
end
function policy_evaluation(pi::Dict, U::Dict, gmdp::GridMarkovDecisionProcess; k::Int64=20)
for i in 1:k
for state in gmdp.states
U[state] = (reward(gmdp, state)
+ (gmdp.gamma
* sum((p * U[state_prime] for (p, state_prime) in transition_model(gmdp, state, pi[state])))));
end
end
return U;
end
"""
policy_iteration(mdp::T) where {T <: AbstractMarkovDecisionProcess}
Return a policy using the policy iteration algorithm (Fig. 17.7) given the Markov decision process 'mdp'.
"""
function policy_iteration(mdp::T) where {T <: AbstractMarkovDecisionProcess}
local U::Dict = Dict(collect(Pair(state, 0.0) for state in mdp.states));
local pi::Dict = Dict(collect(Pair(state, rand(RandomDeviceInstance, collect(actions(mdp, state))))
for state in mdp.states));
while (true)
U = policy_evaluation(pi, U, mdp);
local unchanged::Bool = true;
for state in mdp.states
local action = argmax(collect(actions(mdp, state)), (function(action::Union{Nothing, Tuple{Int64, Int64}})
return expected_utility(mdp, U, state, action);
end));
if (action != pi[state])
pi[state] = action;
unchanged = false;
end
end
if (unchanged)
return pi;
end
end
end