-
Notifications
You must be signed in to change notification settings - Fork 7
/
async_vector_env.py
404 lines (350 loc) · 16.1 KB
/
async_vector_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import numpy as np
import multiprocessing as mp
import time
import sys
from enum import Enum
from copy import deepcopy
from gym import logger
from gym.vector.vector_env import VectorEnv
from gym.error import (AlreadyPendingCallError, NoAsyncCallError,
ClosedEnvironmentError)
from gym.vector.utils import (create_shared_memory, create_empty_array,
write_to_shared_memory, read_from_shared_memory,
concatenate, CloudpickleWrapper, clear_mpi_env_vars)
__all__ = ['AsyncVectorEnv']
class AsyncState(Enum):
DEFAULT = 'default'
WAITING_RESET = 'reset'
WAITING_STEP = 'step'
class AsyncVectorEnv(VectorEnv):
"""Vectorized environment that runs multiple environments in parallel. It
uses `multiprocessing` processes, and pipes for communication.
Parameters
----------
env_fns : iterable of callable
Functions that create the environments.
observation_space : `gym.spaces.Space` instance, optional
Observation space of a single environment. If `None`, then the
observation space of the first environment is taken.
action_space : `gym.spaces.Space` instance, optional
Action space of a single environment. If `None`, then the action space
of the first environment is taken.
shared_memory : bool (default: `True`)
If `True`, then the observations from the worker processes are
communicated back through shared variables. This can improve the
efficiency if the observations are large (e.g. images).
copy : bool (default: `True`)
If `True`, then the `reset` and `step` methods return a copy of the
observations.
context : str, optional
Context for multiprocessing. If `None`, then the default context is used.
Only available in Python 3.
daemon : bool (default: `True`)
If `True`, then subprocesses have `daemon` flag turned on; that is, they
will quit if the head process quits. However, `daemon=True` prevents
subprocesses to spawn children, so for some environments you may want
to have it set to `False`
worker : function, optional
WARNING - advanced mode option! If set, then use that worker in a subprocess
instead of a default one. Can be useful to override some inner vector env
logic, for instance, how resets on done are handled. Provides high
degree of flexibility and a high chance to shoot yourself in the foot; thus,
if you are writing your own worker, it is recommended to start from the code
for `_worker` (or `_worker_shared_memory`) method below, and add changes
"""
def __init__(self, env_fns, observation_space=None, action_space=None,
shared_memory=True, copy=True, context=None, daemon=True, worker=None):
try:
ctx = mp.get_context(context)
except AttributeError:
logger.warn('Context switching for `multiprocessing` is not '
'available in Python 2. Using the default context.')
ctx = mp
self.env_fns = env_fns
self.shared_memory = shared_memory
self.copy = copy
if (observation_space is None) or (action_space is None):
dummy_env = env_fns[0]()
observation_space = observation_space or dummy_env.observation_space
action_space = action_space or dummy_env.action_space
dummy_env.close()
del dummy_env
super(AsyncVectorEnv, self).__init__(num_envs=len(env_fns),
observation_space=observation_space, action_space=action_space)
if self.shared_memory:
_obs_buffer = create_shared_memory(self.single_observation_space,
n=self.num_envs, ctx=ctx)
self.observations = read_from_shared_memory(_obs_buffer,
self.single_observation_space, n=self.num_envs)
else:
_obs_buffer = None
self.observations = create_empty_array(
self.single_observation_space, n=self.num_envs, fn=np.zeros)
self.parent_pipes, self.processes = [], []
self.error_queue = ctx.Queue()
target = _worker_shared_memory if self.shared_memory else _worker
target = worker or target
with clear_mpi_env_vars():
for idx, env_fn in enumerate(self.env_fns):
parent_pipe, child_pipe = ctx.Pipe()
process = ctx.Process(target=target,
name='Worker<{0}>-{1}'.format(type(self).__name__, idx),
args=(idx, CloudpickleWrapper(env_fn), child_pipe,
parent_pipe, _obs_buffer, self.error_queue))
self.parent_pipes.append(parent_pipe)
self.processes.append(process)
process.daemon = daemon
process.start()
child_pipe.close()
self._state = AsyncState.DEFAULT
self._check_observation_spaces()
def seed(self, seeds=None):
self._assert_is_running()
if seeds is None:
seeds = [None for _ in range(self.num_envs)]
if isinstance(seeds, int):
seeds = [seeds + i for i in range(self.num_envs)]
assert len(seeds) == self.num_envs
if self._state != AsyncState.DEFAULT:
raise AlreadyPendingCallError('Calling `seed` while waiting '
'for a pending call to `{0}` to complete.'.format(
self._state.value), self._state.value)
for pipe, seed in zip(self.parent_pipes, seeds):
pipe.send(('seed', seed))
_, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
def reset_async(self):
self._assert_is_running()
if self._state != AsyncState.DEFAULT:
raise AlreadyPendingCallError('Calling `reset_async` while waiting '
'for a pending call to `{0}` to complete'.format(
self._state.value), self._state.value)
for pipe in self.parent_pipes:
pipe.send(('reset', None))
self._state = AsyncState.WAITING_RESET
def reset_wait(self, timeout=None):
"""
Parameters
----------
timeout : int or float, optional
Number of seconds before the call to `reset_wait` times out. If
`None`, the call to `reset_wait` never times out.
Returns
-------
observations : sample from `observation_space`
A batch of observations from the vectorized environment.
"""
self._assert_is_running()
if self._state != AsyncState.WAITING_RESET:
raise NoAsyncCallError('Calling `reset_wait` without any prior '
'call to `reset_async`.', AsyncState.WAITING_RESET.value)
if not self._poll(timeout):
self._state = AsyncState.DEFAULT
raise mp.TimeoutError('The call to `reset_wait` has timed out after '
'{0} second{1}.'.format(timeout, 's' if timeout > 1 else ''))
results, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
self._state = AsyncState.DEFAULT
if not self.shared_memory:
concatenate(results, self.observations, self.single_observation_space)
return deepcopy(self.observations) if self.copy else self.observations
def step_async(self, actions):
"""
Parameters
----------
actions : iterable of samples from `action_space`
List of actions.
"""
self._assert_is_running()
if self._state != AsyncState.DEFAULT:
raise AlreadyPendingCallError('Calling `step_async` while waiting '
'for a pending call to `{0}` to complete.'.format(
self._state.value), self._state.value)
for pipe, action in zip(self.parent_pipes, actions):
pipe.send(('step', action))
self._state = AsyncState.WAITING_STEP
def step_wait(self, timeout=None):
"""
Parameters
----------
timeout : int or float, optional
Number of seconds before the call to `step_wait` times out. If
`None`, the call to `step_wait` never times out.
Returns
-------
observations : sample from `observation_space`
A batch of observations from the vectorized environment.
rewards : `np.ndarray` instance (dtype `np.float_`)
A vector of rewards from the vectorized environment.
dones : `np.ndarray` instance (dtype `np.bool_`)
A vector whose entries indicate whether the episode has ended.
infos : list of dict
A list of auxiliary diagnostic informations.
"""
self._assert_is_running()
if self._state != AsyncState.WAITING_STEP:
raise NoAsyncCallError('Calling `step_wait` without any prior call '
'to `step_async`.', AsyncState.WAITING_STEP.value)
if not self._poll(timeout):
self._state = AsyncState.DEFAULT
raise mp.TimeoutError('The call to `step_wait` has timed out after '
'{0} second{1}.'.format(timeout, 's' if timeout > 1 else ''))
results, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
self._state = AsyncState.DEFAULT
observations_list, rewards, dones, infos = zip(*results)
if not self.shared_memory:
concatenate(observations_list, self.observations,
self.single_observation_space)
return (deepcopy(self.observations) if self.copy else self.observations,
np.array(rewards), np.array(dones, dtype=np.bool_), infos)
def close_extras(self, timeout=None, terminate=False):
"""
Parameters
----------
timeout : int or float, optional
Number of seconds before the call to `close` times out. If `None`,
the call to `close` never times out. If the call to `close` times
out, then all processes are terminated.
terminate : bool (default: `False`)
If `True`, then the `close` operation is forced and all processes
are terminated.
"""
timeout = 0 if terminate else timeout
try:
if self._state != AsyncState.DEFAULT:
logger.warn('Calling `close` while waiting for a pending '
'call to `{0}` to complete.'.format(self._state.value))
function = getattr(self, '{0}_wait'.format(self._state.value))
function(timeout)
except mp.TimeoutError:
terminate = True
if terminate:
for process in self.processes:
if process.is_alive():
process.terminate()
else:
for pipe in self.parent_pipes:
if (pipe is not None) and (not pipe.closed):
pipe.send(('close', None))
for pipe in self.parent_pipes:
if (pipe is not None) and (not pipe.closed):
pipe.recv()
for pipe in self.parent_pipes:
if pipe is not None:
pipe.close()
for process in self.processes:
process.join()
def _poll(self, timeout=None):
self._assert_is_running()
if timeout is None:
return True
end_time = time.time() + timeout
delta = None
for pipe in self.parent_pipes:
delta = max(end_time - time.time(), 0)
if pipe is None:
return False
if pipe.closed or (not pipe.poll(delta)):
return False
return True
def _check_observation_spaces(self):
self._assert_is_running()
for pipe in self.parent_pipes:
pipe.send(('_check_observation_space', self.single_observation_space))
same_spaces, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
if not all(same_spaces):
raise RuntimeError('Some environments have an observation space '
'different from `{0}`. In order to batch observations, the '
'observation spaces from all environments must be '
'equal.'.format(self.single_observation_space))
def _assert_is_running(self):
if self.closed:
raise ClosedEnvironmentError('Trying to operate on `{0}`, after a '
'call to `close()`.'.format(type(self).__name__))
def _raise_if_errors(self, successes):
if all(successes):
return
num_errors = self.num_envs - sum(successes)
assert num_errors > 0
for _ in range(num_errors):
index, exctype, value = self.error_queue.get()
logger.error('Received the following error from Worker-{0}: '
'{1}: {2}'.format(index, exctype.__name__, value))
logger.error('Shutting down Worker-{0}.'.format(index))
self.parent_pipes[index].close()
self.parent_pipes[index] = None
logger.error('Raising the last exception back to the main process.')
raise exctype(value)
def _worker(index, env_fn, pipe, parent_pipe, shared_memory, error_queue):
assert shared_memory is None
env = env_fn()
parent_pipe.close()
try:
while True:
command, data = pipe.recv()
if command == 'reset':
observation = env.reset()
pipe.send((observation, True))
elif command == 'step':
observation, reward, done, info = env.step(data)
if done:
info["terminal_observation"] = observation
observation = env.reset()
pipe.send(((observation, reward, done, info), True))
elif command == 'seed':
env.seed(data)
pipe.send((None, True))
elif command == 'close':
pipe.send((None, True))
break
elif command == '_check_observation_space':
pipe.send((data == env.observation_space, True))
else:
raise RuntimeError('Received unknown command `{0}`. Must '
'be one of {`reset`, `step`, `seed`, `close`, '
'`_check_observation_space`}.'.format(command))
except (KeyboardInterrupt, Exception):
error_queue.put((index,) + sys.exc_info()[:2])
pipe.send((None, False))
finally:
env.close()
def _worker_shared_memory(index, env_fn, pipe, parent_pipe, shared_memory, error_queue):
assert shared_memory is not None
env = env_fn()
observation_space = env.observation_space
parent_pipe.close()
try:
while True:
command, data = pipe.recv()
if command == 'reset':
observation = env.reset()
write_to_shared_memory(index, observation, shared_memory,
observation_space)
pipe.send((None, True))
elif command == 'step':
observation, reward, done, info = env.step(data)
if done:
info["terminal_observation"] = observation
observation = env.reset()
write_to_shared_memory(index, observation, shared_memory,
observation_space)
pipe.send(((None, reward, done, info), True))
elif command == 'seed':
env.seed(data)
pipe.send((None, True))
elif command == 'close':
pipe.send((None, True))
break
elif command == '_check_observation_space':
pipe.send((data == observation_space, True))
else:
raise RuntimeError('Received unknown command `{0}`. Must '
'be one of {`reset`, `step`, `seed`, `close`, '
'`_check_observation_space`}.'.format(command))
except (KeyboardInterrupt, Exception):
error_queue.put((index,) + sys.exc_info()[:2])
pipe.send((None, False))
finally:
env.close()