forked from maximeraafat/BlenderNeRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ttc_operator.py
69 lines (55 loc) · 3.04 KB
/
ttc_operator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import shutil
import bpy
from . import blender_nerf_operator
# train and test cameras operator class
class TrainTestCameras(blender_nerf_operator.BlenderNeRF_Operator):
'''Train and Test Cameras Operator'''
bl_idname = 'object.train_test_cameras'
bl_label = 'Train and Test Cameras TTC'
def execute(self, context):
scene = context.scene
train_camera = scene.camera_train_target
test_camera = scene.camera_test_target
# check if cameras are selected : next errors depend on existing cameras
if train_camera == None or test_camera == None:
self.report({'ERROR'}, 'Be sure to have selected a train and test camera!')
return {'FINISHED'}
# if there is an error, print first error message
error_messages = self.asserts(scene, method='TTC')
if len(error_messages) > 0:
self.report({'ERROR'}, error_messages[0])
return {'FINISHED'}
output_train_data = self.get_camera_intrinsics(scene, train_camera)
output_test_data = self.get_camera_intrinsics(scene, test_camera)
# clean directory name (unsupported characters replaced) and output path
output_dir = bpy.path.clean_name(scene.ttc_dataset_name)
output_path = os.path.join(scene.save_path, output_dir)
os.makedirs(output_path, exist_ok=True)
if scene.logs: self.save_log_file(scene, output_path, method='TTC')
if scene.splats: self.save_splats_ply(scene, output_path)
# initial properties might have changed since set_init_props update
scene.init_output_path = scene.render.filepath
scene.init_frame_end = scene.frame_end
if scene.test_data:
# testing transforms
output_test_data['frames'] = self.get_camera_extrinsics(scene, test_camera, mode='TEST', method='TTC')
self.save_json(output_path, 'transforms_test.json', output_test_data)
if scene.train_data:
# training transforms
output_train_data['frames'] = self.get_camera_extrinsics(scene, train_camera, mode='TRAIN', method='TTC')
self.save_json(output_path, 'transforms_train.json', output_train_data)
# rendering
if scene.render_frames:
output_train = os.path.join(output_path, 'train')
os.makedirs(output_train, exist_ok=True)
scene.rendering = (False, True, False)
scene.frame_end = scene.frame_start + scene.ttc_nb_frames - 1 # update end frame
scene.render.filepath = os.path.join(output_train, '') # training frames path
bpy.ops.render.render('INVOKE_DEFAULT', animation=True, write_still=True) # render scene
# if frames are rendered, the below code is executed by the handler function
if not any(scene.rendering):
# compress dataset and remove folder (only keep zip)
shutil.make_archive(output_path, 'zip', output_path) # output filename = output_path
shutil.rmtree(output_path)
return {'FINISHED'}