diff --git a/ProcessLib/SmallDeformation/Tests.cmake b/ProcessLib/SmallDeformation/Tests.cmake
index 54b03123cbf..1cb731ee735 100644
--- a/ProcessLib/SmallDeformation/Tests.cmake
+++ b/ProcessLib/SmallDeformation/Tests.cmake
@@ -279,3 +279,10 @@ if(NOT OGS_USE_PETSC)
NotebookTest(NOTEBOOKFILE Mechanics/PLLC/PLLC.ipynb RUNTIME 7)
endif()
endif()
+
+NotebookTest(
+ NOTEBOOKFILE Mechanics/Linear/test_ip_data/2D-clamped-gravity.py
+ RUNTIME 10
+ SKIP_WEB
+)
+OgsTest(PROJECTFILE Mechanics/Linear/test_ip_data/square_1e2_test_ip_data.prj)
diff --git a/Tests/Data/Mechanics/Linear/test_ip_data/2D-clamped-gravity.py b/Tests/Data/Mechanics/Linear/test_ip_data/2D-clamped-gravity.py
new file mode 100644
index 00000000000..941d6e1a6b8
--- /dev/null
+++ b/Tests/Data/Mechanics/Linear/test_ip_data/2D-clamped-gravity.py
@@ -0,0 +1,364 @@
+# ---
+# jupyter:
+# jupytext:
+# text_representation:
+# extension: .py
+# format_name: percent
+# format_version: '1.3'
+# jupytext_version: 1.14.5
+# kernelspec:
+# display_name: ogs-local-release-build
+# language: python
+# name: ogs-local-release-build
+# ---
+
+# %% [markdown]
+# # Deformation of a linear elastic Material due to its own gravity
+
+# %%
+import pyvista as pv
+import numpy as np
+
+pv.set_jupyter_backend("static")
+
+import matplotlib.pyplot as plt
+import subprocess
+import os
+import sys
+
+# %%
+outdir = os.environ.get("OGS_TESTRUNNER_OUT_DIR", "_out")
+if not os.path.exists(outdir):
+ os.makedirs(outdir)
+ with open(os.path.join(outdir, ".gitignore"), "w") as fh:
+ fh.write("*\n")
+
+# %% [markdown]
+# # Problem Description
+
+# %% [markdown]
+# We consider a linear elastic isotropic material in 2D subject to plane strain conditions.
+# The material specimen is clamped in $x$ direction and subject only to its own gravity.
+# The domain is the rectangle $[0, X] \times [0, Y]$.
+#
+# $$
+# \def\myvec#1{\underline{#1}}
+# \def\mymat#1{\underline{\underline{#1}}}
+# %
+# \begin{align*}
+# u_x\bigr|_{x=0} &= 0 \\
+# u_x\bigr|_{x=X} &= 0 \\
+# u_y\bigr|_{y=0} &= 0 \\
+# \sigma_{yy}\bigr|_{y=Y} &= 0
+# \end{align*}
+# $$
+#
+# The governing equation is
+#
+# $$
+# \mathop{\mathrm{div}} \mymat{\sigma} = -\myvec{f} = (0, -\rho g)^T
+# $$
+
+# %% [markdown]
+# # Parameters
+
+# %%
+rho = 1 # kg/m³, density
+g = -9.81 # m/s², gravitational acceleration
+nu = 0.3 # Poisson ratio
+E = 1e6 # Pa, Young's modulus
+X = 1 # m, width of the domain
+Y = 1 # m, height of the domain
+
+
+# %% [markdown]
+# # Analytical Solution
+
+# %% [markdown]
+# In the plane strain setting $\epsilon_{xz} = \epsilon_{yz} = \epsilon_{zz} = 0$.
+# In that setting Hooke's law is
+#
+# $$
+# \myvec{\epsilon}
+# = \begin{pmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ \epsilon_{xy} \end{pmatrix}
+# = \frac{1}{2G} \begin{pmatrix}
+# 1-\nu & -\nu & 0 \\
+# -\nu & 1-\nu & 0 \\
+# 0 & 0 & 1
+# \end{pmatrix}
+# \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{pmatrix}
+# $$
+#
+# The clamping in $x$ direction yields $\epsilon_{xx} = 0$.
+# Furthermore, there are no shear stresses/strains: $\epsilon_{xy} = 0$, $\sigma_{xy} = 0$.
+# Therefore, the governing equation for $\sigma_{yy}$ reduces to
+# $$
+# \partial_y \sigma_{yy} = -\rho g
+# $$
+# Integrating that and using the stress boundary condition yields
+# $$
+# \sigma_{yy} = \rho g \, (Y - y)
+# $$
+# The other normal stresses follow as
+# $$
+# \sigma_{xx} = \sigma_{zz} = \frac{\nu}{1-\nu}\sigma_{yy}
+# $$
+# For the normal strain in $y$ direction we get
+# $$
+# \epsilon_{yy} = \frac{1+\nu}{E} \frac{1-2\nu}{1-\nu} \sigma_{yy}
+# $$
+# And finally for the $y$ displacement
+# $$
+# u_y = \frac{1+\nu}{E} \frac{1-2\nu}{1-\nu} \rho g \bigl(Yy - \tfrac12 y^2\bigr)
+# $$
+
+
+# %%
+def sigma_yy_ana(y):
+ return rho * g * (Y - y)
+
+
+def sigma_xx_ana(y):
+ return nu / (1 - nu) * sigma_yy_ana(y)
+
+
+def sigma_zz_ana(y):
+ return nu / (1 - nu) * sigma_yy_ana(y)
+
+
+factor_eps_yy_nu_E = (1 + nu) / E * (1 - 2 * nu) / (1 - nu)
+
+
+def eps_yy_ana(y):
+ return factor_eps_yy_nu_E * sigma_yy_ana(y)
+
+
+def u_y_ana(y):
+ return factor_eps_yy_nu_E * rho * g * (Y * y - 0.5 * y**2)
+
+
+# %% [markdown]
+# # Run OGS
+
+# %%
+with open(os.path.join(outdir, "ogs-out.txt"), "w") as fh:
+ subprocess.run(
+ ["ogs", "-o", outdir, "square_1e2_test_ip_data.prj"],
+ check=True,
+ stdout=fh,
+ stderr=subprocess.STDOUT,
+ )
+
+# %%
+# convert last result to point cloud
+with open(os.path.join(outdir, "point-cloud-out.txt"), "w") as fh:
+ subprocess.run(
+ [
+ "ipDataToPointCloud",
+ "-i",
+ os.path.join(outdir, "square_1e2_ts_4_t_1.000000.vtu"),
+ "-o",
+ os.path.join(outdir, "square_1e2_ts_4_point_cloud.vtu"),
+ ],
+ check=True,
+ stdout=fh,
+ stderr=subprocess.STDOUT,
+ )
+
+
+# %% [markdown]
+# # Read simulation results
+
+
+# %%
+def add_vertex_cells(mesh):
+ num_points_per_cell = np.ones(mesh.n_points, dtype=int)
+ point_ids_per_cell = np.arange(0, mesh.n_points, dtype=int)
+ cells = np.vstack((num_points_per_cell, point_ids_per_cell)).T.ravel()
+ celltypes = [pv.CellType.VERTEX] * mesh.n_points
+ mesh_copy = pv.UnstructuredGrid(cells, celltypes, mesh.points)
+
+ for n in mesh.point_data:
+ mesh_copy.cell_data[n] = mesh.point_data[n]
+
+ return mesh_copy
+
+
+# %%
+mesh = pv.read(os.path.join(outdir, "square_1e2_ts_4_t_1.000000.vtu"))
+mesh_pc = pv.read(os.path.join(outdir, "square_1e2_ts_4_point_cloud.vtu"))
+mesh_pc = add_vertex_cells(mesh_pc) # add vertex cells to make pyvista vis work
+
+# %%
+# make displacement 3D
+u = mesh.point_data["displacement"]
+mesh.point_data["displacement"] = np.hstack((u, np.zeros((u.shape[0], 1))))
+
+# %%
+plotter = pv.Plotter()
+
+plotter.add_mesh(
+ mesh_pc,
+ scalars=mesh_pc.cell_data["sigma_ip"][:, 1],
+ label="sigma_xx at integration points",
+ point_size=5,
+ render_points_as_spheres=True,
+ scalar_bar_args={"title": "sigma_xx"},
+ lighting=False,
+)
+
+mesh_linear = mesh.linear_copy() # avoids tesselation artefacts in PyVista's rendering
+plotter.add_mesh(
+ mesh_linear,
+ style="wireframe",
+ color="#bbbbbb",
+ line_width=1,
+ lighting=False,
+ label="mesh",
+)
+plotter.add_mesh(
+ mesh_linear.warp_by_vector(vectors="displacement", factor=2000),
+ style="wireframe",
+ color="k",
+ line_width=2,
+ lighting=False,
+ label="warped mesh (factor 2000)",
+)
+
+plotter.add_axes()
+# plotter.add_legend()
+plotter.view_xy()
+plotter.add_title(
+ "sigma_xx at integration points,\nmesh (grey), deformed mesh (black, factor 2000)",
+ font_size=10,
+)
+plotter.show()
+
+# %% [markdown]
+# # Comparison to analytical solution
+#
+
+# %% [markdown]
+# ## Nodal displacement
+
+# %%
+sampled = mesh.sample_over_line((X / 2, 0, 0), (X / 2, Y, 0))
+
+# %%
+ys = sampled.points[:, 1]
+u_ys_num = sampled.point_data["displacement"][:, 1]
+u_ys_ana = u_y_ana(ys)
+
+fig, (ax, ax2) = plt.subplots(1, 2, sharey=True)
+
+ax.plot(u_ys_num, ys, label="num")
+ax.plot(u_ys_ana, ys, label="ana")
+
+ax2.plot(u_ys_num - u_ys_ana, ys)
+assert np.allclose(u_ys_num, u_ys_ana, atol=2.1e-13, rtol=0)
+
+ax.set_ylabel("$y$ / m")
+ax2.set_xlabel(r"$\Delta u_y$ / m")
+
+ax.legend()
+
+ax
+fig.set_size_inches(12, 4)
+
+# %%
+# assert correctness of entire displacment field
+ys = mesh.points[:, 1]
+
+# u_y must match the analytical solutions
+assert np.allclose(
+ mesh.point_data["displacement"][:, 1], u_y_ana(ys), atol=1e-15, rtol=0
+)
+
+# u_x must be zero
+assert np.allclose(mesh.point_data["displacement"][:, 0], 0, atol=1e-15, rtol=0)
+
+# %% [markdown]
+# # Stress at Integration Points
+
+# %%
+ys = mesh_pc.points[:, 1]
+sigma_yys_num = mesh_pc.cell_data["sigma_ip"][:, 1]
+sigma_yys_ana = sigma_yy_ana(ys)
+
+sigma_xxs_num = mesh_pc.cell_data["sigma_ip"][:, 0]
+sigma_xxs_ana = sigma_xx_ana(ys)
+
+sigma_zzs_num = mesh_pc.cell_data["sigma_ip"][:, 2]
+sigma_zzs_ana = sigma_zz_ana(ys)
+
+fig, (ax, ax2) = plt.subplots(1, 2, sharey=True)
+
+(h,) = ax.plot(sigma_yys_num, ys, label="$yy$, num", ls="", marker=".")
+ax.plot(sigma_yys_ana, ys, label="$yy$, ana", color=h.get_color())
+ax2.plot(sigma_yys_num - sigma_yys_ana, ys, ls="", marker=".")
+
+(h,) = ax.plot(sigma_xxs_num, ys, label="$xx$, num", ls="", marker="+")
+ax.plot(sigma_xxs_ana, ys, label="$xx$, ana", color=h.get_color())
+ax2.plot(sigma_xxs_num - sigma_xxs_ana, ys, ls="", marker="+")
+
+(h,) = ax.plot(sigma_zzs_num, ys, label="$zz$, num", ls="", marker="x")
+ax.plot(sigma_zzs_ana, ys, label="$zz$, ana", ls="--", color=h.get_color())
+ax2.plot(sigma_zzs_num - sigma_zzs_ana, ys, ls="", marker="x")
+
+ax.set_xlabel(r"$\sigma$ / Pa")
+ax2.set_xlabel(r"$\Delta\sigma$ / Pa")
+ax.set_ylabel("$y$ / m")
+
+ax.legend()
+
+ax
+fig.set_size_inches(12, 4)
+
+# %% [markdown]
+# # Checks (Assertions)
+
+# %%
+from IPython.display import display, HTML
+
+
+def allclose(x, y, abstol):
+ d = np.max(np.abs(x - y))
+
+ if d <= abstol:
+ return True
+
+ xmin = np.min(x)
+ xmax = np.max(x)
+ ymin = np.min(y)
+ ymax = np.max(y)
+
+ display(
+ HTML(
+ f"""
+
+
Error in allclose()
+ difference of {d} exceeds abstol of {abstol}
+ field 1 ranges from {xmin} to {xmax} (delta = {xmax - xmin})
+ field 2 ranges from {ymin} to {ymax} (delta = {ymax - ymin})
+
+ """
+ )
+ )
+
+ return False
+
+
+# %%
+# assert correctness of entire displacment field
+ys = mesh_pc.points[:, 1]
+
+# normal stress must match the analytical solutions
+# the tolerances are rather high due to the jumps in sigma over element edges
+assert allclose(mesh_pc.cell_data["sigma_ip"][:, 1], sigma_yy_ana(ys), 6e-14)
+assert allclose(mesh_pc.cell_data["sigma_ip"][:, 0], sigma_xx_ana(ys), 3e-14)
+assert allclose(mesh_pc.cell_data["sigma_ip"][:, 0], sigma_zz_ana(ys), 3e-14)
+
+# shear stress must be zero
+assert allclose(mesh_pc.cell_data["sigma_ip"][:, 3], 0, 2.3e-14)
+
+# %%
diff --git a/Tests/Data/Mechanics/Linear/test_ip_data/square_1e2_test_ip_data.prj b/Tests/Data/Mechanics/Linear/test_ip_data/square_1e2_test_ip_data.prj
new file mode 100644
index 00000000000..8e249937fbf
--- /dev/null
+++ b/Tests/Data/Mechanics/Linear/test_ip_data/square_1e2_test_ip_data.prj
@@ -0,0 +1,180 @@
+
+
+ square_1x1_quad_1e2_quadratic.vtu
+ square_1x1.gml
+
+
+ SD
+ SMALL_DEFORMATION
+ 3
+
+ LinearElasticIsotropic
+ E
+ nu
+
+ 0 -9.81
+
+ displacement
+
+
+
+
+
+
+
+
+
+ basic_newton
+
+ DeltaX
+ INFINITY_N
+ 1e-9
+
+
+ BackwardEuler
+
+
+ FixedTimeStepping
+ 0
+ 1
+
+
+ 4
+ 0.25
+
+
+
+
+
+
+
+
+
+
+
+ Solid
+
+
+ density
+ Constant
+ 1
+
+
+
+
+
+
+
+
+ E
+ Constant
+ 1e6
+
+
+ nu
+ Constant
+ .3
+
+
+ displacement0
+ Constant
+ 0 0
+
+
+ dirichlet0
+ Constant
+ 0
+
+
+
+
+ displacement
+ 2
+ 1
+ displacement0
+
+
+ square_1x1_geometry
+ left
+ Dirichlet
+ 0
+ dirichlet0
+
+
+ square_1x1_geometry
+ bottom
+ Dirichlet
+ 1
+ dirichlet0
+
+
+ square_1x1_geometry
+ right
+ Dirichlet
+ 0
+ dirichlet0
+
+
+
+
+
+
+ basic_newton
+ Newton
+ 4
+ general_linear_solver
+
+
+
+
+ general_linear_solver
+ -i cg -p jacobi -tol 1e-16 -maxiter 10000
+
+ CG
+ DIAGONAL
+ 10000
+ 1e-16
+
+
+ sd
+ -sd_ksp_type cg -sd_pc_type bjacobi -sd_ksp_rtol 1e-16 -sd_ksp_max_it 10000
+
+
+
+
+
+ square_1e2_ts_4_t_1.000000.vtu
+ displacement
+ 1e-15
+ 0
+
+
+ square_1e2_ts_4_t_1.000000.vtu
+ sigma
+ 9.2e-14
+ 0
+
+
+ square_1e2_ts_4_t_1.000000.vtu
+ sigma_ip
+ 8.4e-14
+ 0
+
+
+
diff --git a/Tests/Data/Mechanics/Linear/test_ip_data/square_1e2_ts_4_t_1.000000.vtu b/Tests/Data/Mechanics/Linear/test_ip_data/square_1e2_ts_4_t_1.000000.vtu
new file mode 100644
index 00000000000..d4e427106be
--- /dev/null
+++ b/Tests/Data/Mechanics/Linear/test_ip_data/square_1e2_ts_4_t_1.000000.vtu
@@ -0,0 +1,29 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ _AQAAAAAAAAAAgAAAAAAAAGEAAAAAAAAAVgAAAAAAAAA=eF5VjDEOgDAIAP/C7KZTv2IMQUXDADS0Dqbp3+3qeHfJNRCrfAdVccPsg5Ai6C2Q1vaLHicHpHkCI2VIUORWQskwzKM7B/qFh2t2Y6tjsPStfwt7JC0=AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9E1NDY00003MTYxMEtONNJLySwqqQQATgwG2A==AQAAAAAAAAAAgAAAAAAAAIBwAAAAAAAA4TEAAAAAAAA=eF512Xc819//P/4yIhXaJUR7aKokh9KeNLWLVBpokUhDe9erYZZKJTsNFOfJEymjIdl7b9lC6Pe+XNzO83v5nH7+vP1zfd7dz/3cz+PVS75fiYL3E3lh6Nz3DYp7Rwr7Io/ak9ii/tGHWP94+D6jXk6YNaqH3YNnI4Q2yFKf3lwwjfKl8acPahm5ywpbeq7vI5unKvyBXHbnVrSS9AvaD14EfJZr4/d+vrTB8R//JLIEfOb9gf8TedrXwBGztQQiPwx+f2SvDJ9HT28IiRXns9/riPr/9xOQqxyvbRic5UH6cz77vRfBs18knPHvsn5Nnd5qkYq+9Cu8ZvjfkEP3O4jFKCcQ5gm5+seg/yfgZXL1T/VbFRQnE02/cP7XLvoTyfmRZ2utfL48oTZd9CdBbeKi5z+y6Xd4v7n6ZW7aFXeU5v9zvsx/EOHUu1ruY5f9MY63u1b9NIIwr4XzI/N2rC3Z9IwyL5zz/VU6TjrkCLqczxC9u0kvf8USfj5ZPqd/uWDsoMh/zpfN/9KFgy/3FAQQmy76v6e15UpC2UdR/fz5eu4cNcNpzWfSl/NZvy4vTfLMO/WRsvnMgM/OO+rO5BQ/nep/7hc7j7aJSi7+rX/+6c8AZP1zv8YqtPkR1u9s+LbI+t43RlXt/U7ZvPPz/6BP2JMgkx9UnptPVv/rFkW/oXqhovuVyfW/10H5uUsyYwk/P2w+lWoebRmZWSbqP+/7yzgevWElJMe76L+v4q2G6fbpNBpeE/wYZJ2E2d/0h/6iXfmZy1QcSx/9v/nM5OZTePR79vujwaSr+yv7Om9T2aBYys6X7U/Wr8he3moa7gn/+Ox8AzcWDUk5l0NYv1u5/ndIfFrwxbCUsPOk3Hxmn31fbrLMn5yFl871J7pg1kSjgATyk6ufnYfn83GLqmKKRP0XcPXnLfrZZ++AaNF+SIVviTx81c84ee1cGgevDv4nZNULFw3ag+Ipqz+Cm0+tyASdY6fyqS1XP+tPdnHvmUEaTfQzvGr44cgzDXQdVZ79Fs0n7x/foPlMqiaKHuV8Nk/uR+/NLugVIPLr4UchJ3t+ub6utVa03/j3cd+e1TId14+J7hc/Py8iL+hH3y0R9Z+dL8vGPYrmT9tSSFj9AfB7IceN3tru4JZDuup/i6a9R37PdpLK5gU+y/Iz339f1kdSW47zeyMvkI8wEj+fKzpf1h92nzdtmzovMEJCkMj5KcjiYseGWjyUE8h30R8LqcR8m9xIUf058E8j31fs16NdooImw+su0+lnIF92GbHna24tleH2J/u9P3p7l8z9mkGOcPtfdL9sJC7E3swlX7j+s32aeHaqlYl6s6j/bH+y89arDa3+k5rf5fv78cPR5fOkqgj7fuDflwmpesG5OypE7zu//x/vMBf/HJIm2g/8/LtcK5VWuZEt2j9sv7G/R2v/4SULQnLJwC76//KE0mbhuVTC7lca5w+0MNDKn/ORsPvbCD+WzX9I63HDYwmEP1+WDdW/Tx3hFCTaz/z92rfj1tZzH2pE94v5bD+M7jd6i9ueJtF++Ah/EPLGBR+nXdgZ/M/+ZLnANjEtXz/0n/vLcpalu0DOJkK039j3D+vXgMY5mt0zQkTzw/rD9sWKp99dLMflkBB4lfCDkfcYyd27ureNmJqOv7WysI9Q50zV2pRDqsKDyF5GzR+rNyZRwdBm+QT73sJNu7Vy9H1VhBR5heWUbqo2saT350/3Ni7rJSy+2y/lTtJwYR9krbT589aMLqbb4GnA3448Yaew2b/+BQ2FtxW+EPnjWfWIqWs/04HwauEPRq4yObJy06Aouo+r/wBygV+iydmLuaL6t8APQ87J9P3UZlZMFeG1wFdGvmEmX7hnUDTdA4/AZ7+3Ym1qndynNML6sRk++z2/bMOrjTerSF94lfBZfmNiMedySwYx4XyWg+a4jfDbe4eGcf0JR34kb+axerAH6ao/X0zP7FO8lElYvdqcX9dS9Cv5e4HI38z1J8P1zZvsXu9Jf3jV8Achr5rb67GHuhe1gLcI/nHklrJXDwf2yCChXfRHrWC4zMLwYtH8FMBn2XFppbJxmJCy+ZwHn+W2JPElxCC3S19/haz6zoeJZCi8OvhDkJ9M+j1fuDOVHOJ8lk3K5vYNHJ5MWD/4+fm0td5hkXEK7QevlDvfOSu0VjhWptPD8HThmyPnDV1l/3x6nWg+2fmyv0fWZ+WRzHw3KguvDL488lsdmfE3EhqoEbzZ8Hci/1zoZLMh/IeoP5u4/kwM3PQ3vGciYX4Rd39X+j0tkdVLJ7s53xg5ra/zkIEKpSSc6z/rz95yS3XPj1Wi/ldx87M7oV/vv1+Tyf4u7u9G1W1rdPzK6AfOD0Ze2zp7VUl8LmX9KOf6/21nhdjurHrK6p8Dn+Wae5LziqJiiIDzWb90ep87NtEqTHR/K+APQL6vLD7F91USMetifwYm9jjSX7m0y/4bnRo64Y1fKWHzWMvNJ5m/48LKF62i/vD7R23JuOOKI5oJ64cB15/QPTtVR1/spi0JLx1+D2T3g3PfGA78Tdh5svNl8/R5zfoTQa/9RPVv5Pa/FvrD+l/Kzeek7cNiPKsTiTW8BfAtkSWXKJlQ9b//7B/Wn9331y7Y/aeNdlX/6kg/O1NBIz0Cby53v9bfruoert4s8vn6Xfb2Sgj0jBbdrzxu/yw/Yx7j87nsn/lh74H244I1HbdqCXuv+P1wVGnzqoI7dUQVHntfVJAbjdK9h54uIzu5/hsiB8e5qd+xkdDm3y/2e5k/rYNPD5PQVoLXzL1fvz1fV41X7KG9A54md75Ks5aHjKdyAsr57Pc69OZX3zgsKeD94cjzR4VopeyQF6yHpw5/I7KM7LaemyNqKJvHzVz/w3ooJ138Xk2Z94fzDx0be/bhj0JqyPV/FzL9sbdDRqaR8PWz/MMna3vuoV9d7v+Tw75bdixrFb2//PnKOoTlbjb+fz7//bNScuW0pD91RJHrD+vXryz9EYn1/+982fcPy+fPeM6r2ltC+PNl922xv6LCn6ASUf318BWQfR9nZdsY/hLtZ3a+7D63G0xQnaGT+M/9Yn43U12rkiXfRN8P7PuEvfcjDg2NeDM2+Z/9w/K4Q19WjZ3VITpfdr9YPhG37VfcxzraE142fGlk5eWLLp3f1kqZp8V9n3QfvKfGaJczCeF89h5k65rLzbFJojLwMuFLIQ9ea+LiKWdM7OAth38W+VVU9+ATPg2i/jOf/Z6a1oAC/5n5pBu8BPgdnzqzwS4FZekeDeTpuwvF8y/LCA+eWrRrZL2y8Bmy7uzv17ZGl9M/Ruv2R2v2FHouybMZYK4k7EC2iv7wd29RKV0lN6JyVaWUMKPvqXuSZcOE+siqqYrKd40TKfNM4bsjS2+t+y/T0I5039XpvYIvjhwUvqZpMhlC1sDLhs/y6vDyDB3/Uvoani38t8jz1dNGVq3Lpe2o1xv+X2SdV45W051zyQ54FfC3IV/NyJ7be40ffd5F/cF/lcS/aT0T+T6c3+volrfCH1FkI7wqzte7qa40pHsJYb4Z5w/7tE+6ITuXsH74w5fg+mMArwT+JmR7qefJ621SqT88G/isXxl9wqOmHEkT9Z/Vz/L7CS/TT1rn0vXwcuGvRd42VSp5n1q2qP9W8Nnv7Y0gRw4cvEmZ58f5xv1DVb2iA+hWeNXw2Xmcspb7NNoxmbjC2w2f5czSNp3TU3OJJLw38HsgX7RIeBYozBD1n++PZca2Z2KNNiQI3ln4LL8vixw82jOWsnn34s93+9STvu2VZDO8MvhbkN17LdwXv6qaPOHuFztv9wmltr/6xtC/Rv///W/Qj171ZHQj3QOvAf5u5F7Wc7xfNrVQdn9N4LshX0tJPz/Vq1A0P/z9EsoLr6jpvKHr4OXDZ+d9XclDcOZmOn0Hz5qbH8dys1WqlQUin52vGPKtQpPVm6MKCDvfSm7+72yvltasySKe8I7A90J+0mry9u2QfMrmnfW/G7Lms0OS8a//933D3V82P/1+qUgKjidTZ3g74TshL71hni2rkU6Y78v152SPqMuFFk6i+c/h5v/XNIPHA0wpDYR3Bn4Am1eX/qTdqYKwej24/Zmwtp7a/e+/P9h8FsNn99nt1Zn66Akt5BW84/BZbuw5I1kvuFl0f725/rhcHPHb9Fk12cT5LE96fcdGzKiYsHpPwWfnHbjDxrp4Y5ioP2x+WM558yx09YJ4ugJeCnyW83XEz0TJFNFoePfhs6y7amhkVmkT5X3W/zMZx65ZXBMTsPclHf5K5J/jSPbYjt80At4l+BRZu8+Eo4EZrVSM6w/r16kb/aVileoom0e2H9h9zrM8cHnF+zbR/j8A/wWy5rbrg54eK/lnf7Lfa/KIKrjrkiN6v7Lgr0ZWW737m8bDPdQbniV8H2T7pvd+ueE9tPn9yfrjml80KcO1heyEVwvfENlPO2bSSAkJ7YfwjLn9ufeCgUvqU1kBq9eXq//L4r3W6yx7CszgdevX6bMccrHH5dMHegn84FnAZ/n1kDTxm/N/ivYb33+d+9c+RQXVUnZfq7n6T1Mleyupesrm05abz20exqvV/nc/unH9Z76qi8uBGx8y/9k/LK8rdrTa2CSmzfbNMa7/+uarZVOe1Ir2my/n044bw5UH5Il8fn5mG0Zt0VpXTth7zn8/7JvgukUYVvGPz/pPZb9EjvLL+ud9YXnalPNPX3z4Rth7y95fth/8VD5Eli7MJ2Jcf1hecjpWfkp1LmH3KZP7fos9HKcrm9FE2PcUv38aZvVI1drYTNn7y59vcNxFqQ0SdXQ7t39Yv8reZbcnba6mbF4OwWf3oV1yQx/PObFEiquf9WueSlDIIUU3UX+KuP1p2v4n9p3VFyKEd57bD2seJ7tWmjUS9r3A7hfbR1dLB483P9ZA2H3l7++8xdvO5jSKa5e25ehoTpAS7ml7pezYY5iwDPnqZWXdUeopZKWXX3hopqTw1acVGlfthgr1kAPM1lVVL64ldzaeWrjwtoQw/k6Jvk3bYOEt5LFh0e/7F/4lxfAM4Rchb5rxfba56U+6EN5z+CxTFb3i8lcviB+8Bvi+yNeJgeKAhAhawdVfjtzvy64hCiOT6Ap4vvBZ7i7z96rn7GbqAC8Vvj1yRcAAh+/y90gNPEv4jaz+YQuc/riWEFavF/xlyG8iZ5fZlkUTZ3gF8B8hmzy7p5FS+Y6y/u+Hz/6e5YIjA6sc3OkCeC+4/iyeeeJ7gW02fcT5rsguD7U2RwT8oC3wrOA3IxsV6m5clJ1Pl8N7CX8JcuioN5KG9e30Abwk+PeRg8+0e0sKPKhke6d3Bb4U8q7hqnKav+uJLjx3rn5LU5WvtybWEhd4xfAfI8sG5j3R2dhAG1DvMa7/fjnjPBx2pJNFXfTn/pap+ntkysldrn6WA7c/E2+dF0X4/rDcv+RIxgm3DtH88+drXRF93ePJX/IcXiH8J8jHBwwLdd/mS/PhbYefhyy1S0q51vIzYf325PqfMc1/97x5dZT1h58f3UeOU6O+FNJ6eEfhsxz5JIj2D7Ug8+E9g8/myd1ee+rMzd8oq7cE/lPkhUG1fUpWZVM2LzbwW5HVNO/fl6yuEvWfzQ/LiXGN3lJRGYTND7tfLAdYf5/wd2w5rYNnAr8KOU/s+vrYK8/paq4/7P5moj+Puf6zfNZeOb/D8wmt5vxK5DeH4g+fFfMjq+B5c77PKMm6pw7p5F4X9d+t9Ai1mZ1DWD+sufmZntG/aF9lPFnG9Yedr5/do/BZad212X7Ih8/O26Al/d79/a2EzfsR+Ow+xF+ffHrodWlt5vtw9Xe7KDMjPFlM+yq8OPjXkD3tRywf4Z8t2j+74bM89HWc2oa9kaL9zJ/vYLFVCYPF3akXvDr43sjqc3ZO8CqLJ7XwDsFn+3Tl6O4Oj6xaKZtPfj9c2FJsnEy6C9g+K+DONyOyOLIjO5eKY9+cgd8Nucn+T/PoYcGi+8ufr47UA8HDsCbR/k/jzve30hthlvEv0fwcgP8LuXGhw4O2Pd9E58v2w1Jkhc3N004fzSY+8KrheyLPT523fV7vEsLvN5Zfjoy4LxlZK3pfXnD9V9Q4PO/gzkbyjLu/bshOrWc0YqbKayfBWw0/Fdlh7x4V+W81Xb4vTuo63Sc9khbchvcF/k1kxUsfpKvapAVsn+2AX4C88eExZ8nsPNH8uHP1J5rNST4hVUM94FXAf4F8TmLO6aZJf2gG8+BnsvqbxPWz9zcS1m92vuw83sXePvlxTSNh/a6E745sPUis2/5EcW22D4y5759Dpy4ZhvqKa+vD84fP8tYD9xIUbb4Rtj/L4bPzWLDv1N1jH7tpy2Eeb8Pvw97LzaOmqmqmkcXcfmb98sX+YfshGz7Lth+CW5MVagj73uG/H9xsHUY+Ki4VvS/899XQfmPEJeRi6Rl4wfBtkYUbt/b7daudiKFeW/h/4S++ayu98EQDZf3n51/oqqfVJ6ucOsLL5eqPXzB2d+vpBsq8U/A7kAv0XBcOGv2Vsv54cL4s9g97z1O475Mbdyo7BjuFkPa2/1s/y4avTW789+53l+9XvdLnPm9vlZEL8KLhX0K+NHDr1e9f/5KJi7QcpnwVF247qZDRW2GwkGWZh+c3C7dn0vN1PRUCzogJHy0KrG+/P1B4CXna9QGX5V1aSMHj1IdzpncXFsmt7V0tN0BYgtwaJhEb5VJOxsLbCJ9lDxct+UHvMsk1eE/hX0feLbmLNjx0J6XwiuGXIasbyNu1bc6imvAOwp+NfCnygWrR5Eb6Hzx3+LeR0w/oaelOa6bMz4VfjBxgfMpRMpJSDXiH4LPfW7VliffxWankKlc/+3vend8036Q4jmTCS4Ofhey1beTJdSXtZDQ8A/gsT1w5eV2kezFh/XDj+mOG/lTAK4NfiSyx4EKl5opoMgXedvhqyBfU4qtd8gpE/X8Mn/09Whs03YJ1uwlq4P2Cz/LO6Lpolbh8qgXPEv5c5NN7XogNi66hF+G5wr+CfNc6eM3V4DjCvCr4tcgzfmsPHJhQJOo/O1+W36Tfvn/meM4//We5v8vt8n5XSkguvEz4LKc9Xqu74WgimQfvMHyCbP78ZcPQJ/XkMryH3PzbVvUZNmhNLcmBlwU/Hzn6uefl5qH/u5/w7OAvQ76q+uu62DZ/wvrzhOvP8plXZewsy0ge57Pc0efQXYWH3QQ6XfR/wbO2zB7W5eQmN/+3kC+caAgb31RAUuAlwE9FDpSc0O/v3QJRfyzgs99rGB+3221qPGX1PubqT2pevF0q7Ydo/pPgs3x8vubdt8PqSH94C+EPRPZSzL/7VL+CnuP6fwH5+phch137i2kGvHT42cibcnMOOo/6QxeyeYS/FFk3PX74ii0lovv1Av4N1q8XkePa7yaRBHix8Fk2aU/v++PvOzKLzQu3f4ImDFujntBMWD9cufk88LKtR/Tcz5TNYypX/10asrzKqJHM4fYPy5F91AafV3tCb3P1s/N1vjJXbIb9H1IOrwQ+2xfJ/poX4wPfkgncfmD7/8PJtWk+swoI855x/kv0h83LD25+atpnuqweFUfYvBzj5jPiUZmTelUhZfPpxvX/cJLWj8z/6ukvbr9VIb/RtNy/+mwHZffLGv4CZLWzqj4HrCQFbH4c4bP3zD3y9tJErW4Cto/5++X0YqjNq33tdCa83fDVkb0TKsPbnxeJ9ie7vywPTg/cl2aWRmLhhcNnuc5DZerhE1mEzaMNfDavraV6xU9qe2vf4frD+u/5e/OrUQ/aCKs/kbtfzwwkPNVndpD5XP/ZfT61crmsWXlPAes///4+vf2/O36zu6CI7Utuf76WnuUgpdNHwN7D/fBZvxaJ235YP6uIsn3J70/rpd7adgcLKes3m3+2T8fZ1ajM3FhG2Xmy/aaLPGOF33jfRnHtK1z9rP+xRpOywm6lkSZ4DfBZllTsuTHlgZg2e2/Z9w+7D2uT/WQ2jBfTZvPjBJ9l4+2GtwNftpJEeDHcfrgcqz3ZvKX2n/vF8mi5wTkOr1pE94u/v21DNsSfkGoU3a9v8JORhecTFBIGl5H18K7BX8f2/24nDfXrUtpsP/D3d8eeTaViob9E7y+7X+y+XfHvWNItvYGM72I/LNi332xJVjVl/eb3W2ThtEPPc1ppPLxI+N+QZ0qfXO1c/JuOg7cZPsv71vlryXvEkK58hVNqssMHhFHWf34/jzEvyFxkkUC2wnOAz7JKkJmch3OCaD/z87knZeLn6fMaCOv3d/jsvXR9aqluKetFDW/aV48+3E2o13rBwW5Sf+FeZP1HWsdDU5vJI8vYQoNFHWFPP6r4H/XoK3yO/Orcp+DYbhVkY7xJuZHXn7CsWzTaeKS8kGV7rZxbcroNxArebvjWyGFaqa7iizLoQ3iP4D9G7ui1Ytm7b4lkP7wS+CzvUEieXPE2jZjDWw/fFLnt7AlBo0YEdYHnDN8ZuR3+engZ8Fle27bgWPvIRGoDbw98W+S1566VLBXWkZvw7sG/hXzDyzDGa3g9fQBP/Han74jc5Kb1SCaimp6FZw7/ArL6vrCGauMM8gSeK/ynyJlHpBY/7RdO18LL5vr/adKmiI9aP+kheJvgs2y8XHnW7nb/f/rvihyhoda6LS6ZzoWXCH8xcs4RiSOBw6vIOXim8O2Q7/ce2fzT/w91hOcE3wl54KWZ8qmvwokhvFz4O5BrXu08b1gYT09w88POw3eqQcumTSHkDjx7+PeRDWaNHdW4JZUacPO5AfnDlQ9GT/u9oKz+w1z/2e+zeXnC9X9RqPUL8emlZAG8ZPhLkcevnbNV/XYZYfXv4uo/4pwwNFeththz8/Mf15/N8FLhr0E+b7cgcZ1VLd3P7it8li3ueSgYuecRVu9D7n6x+pfBS4C/CLnOa/q1ixU/RPd3B3xL5ElmlVWx29LpM3iPuf3Qfa7tHY0DJUQT3jf4BFnrzcW98SGVhHlG8NnvjZUwiMp9lU3duqh/n7FuqWxlKd3Fzc92ZI1u1275lTbTo/C2wj+G/LEm7mCNQyJ90oVv+XXec/Iinu6DVwr/APKWWZbX7dvyKdsH7HzZfrNVq/P+e6BDdH/Z/WLZc4nq+zTaQFg/2P1aiCzX7ZBa0sFf5Djns/5ILltm+G3c73/m/y5yUN9Zg+0bv9IZ8GLhz0IO3Nt078G6JnIF3jH4l5HXfZbqHnk+kbD7xO6vPdcfNu/p8PWRK59lzRWTjKRd+QkaNkYdpnmi/czvtxz5MwF3xv6mevAK4G9DvirVzbSmbxs1g7cN/hFkw8L2yeMn5VJ3eM/geyBfG5PvNWRMJWX7ku1/th96nb/9IOp6DmH3dS+3/4futjAgO2JE+9MFPsvlE7tfeX4znrDzjIc/H3kN+nuyi/3m+nWApvz/vg8fcv1n+1PT84hT9uYm0fvF74e0hMtm5/9+FdW/HT6bp4mLNbYfy5UXeMNzg++FrNj4Kulhb1mBCTz2/rL7oHRCqWO6f08B2zcruO8HGTWDtyb/VVOvLvzzR/vMeOJUR9dw9a9Cft7+ON/Qr4iy98SMe18Gihvt829tEO1PB/gPkGu6va18FyauvYnz2Xt5tmf5yWyPv4Tt+/2c774rwEpnQxph8+kI3wH5zhznRccel9DZ8L7CZ/tOel6w1Pb3ifQiVz/7vdB96/QOGFUStm/Y/LDvLdPmscGJdcVkDLwI+GOR95XPF38zoPCf7x92H9LHBq9s+15MXLvwXcb5rghoqiFs3/Pv+5qbchYlB4roaW7/sHkqzm/eFE7zRPuf9Yf1a8jtzDvZ5kmU+XHwtdl9fms6ufVHCnWFdxM+y/cXSw66vSKJMN+Jq78S92sSvHD445EzMf9X4VnAZ/tI3/WIa6N9d232XrH9zN6bV9ifrF52vmxff1O1PHGsNJ86eRfcnj2mNSytLvtlpZ2s0AH5/rnCwz8uZlHFHnYPFlz/HaZ6eVDaN6teQiXkr0v37l94vYDWGyq76NU0hH0fpifz2kxa2Izs3udhD4uFFfQmvBj4V5F7b5V+dJR+oePhTYA/BvkbfAmjTi8ZvhjyhuM39KODiug5eKHwTyP3M2pYnF+VR2fCU4c/BbnFcIKz660g+g71msH3Qq6f7vqtpT6GmMPzg38YOSJog2pjd0cyGt44+KOQpd0GNC0xlxJ8hncDfiTy3f/Uft4YWkiew6uF/xL5UMb74RlzflIFeErwhyK/Uvu4aLtFCnkNzwK+H/IRr4lzz27OI9vgPYG/C3nnsbboRuVUOg7eFPgsn/iW2TrxXRNxg2cM/zHyrGtn3qUYVVE7eEHwTyJvWetobCkXSUbAU+bm51o+WWzmFk/L4L2GX4SsMmv9vL0yudQFXhZ8Nq8KwsOB5X1+UGV4o+APR44fJFl87E48yYDnCz+T9Wv0uJsSxz6QW/CS4N9Bvpe3wCnlYS4ZDG80fPZ7p6cbRcuPqyeF8ITwK1m/dCWHeYxqI2fg+cO3RC5LlC0OsGrucn409r1NWR9XT7/Dc4Efj5y5LL7fqhH1NARe9/pO/wNy3P60gIQr/nQE1x9VZKPBpX2DJ3whzHOA/wU5/4H0KM0tkvQSvK+o/xpy1ZF75he+5pORXP0sT1itNsoiJo8EsHmE74s80Xu8jbOtrPZBeI/hmyCPaxxX17a/nk6FN4u7v4VxFZOlgroL2PkGc/Oj7Joo8SM5WdQfKfSHIis3KyQ+dCn6Z35YvqS5siVWrohGwLOHH4O894PJrLm2yZTV+5rbD5c+3u2+2bySsPoJ/OnIV+igmEu0kgjh3YQfjrzNtPW7UK6HYAE8K/i6yK7v/PIWOdUQTTYv8NWRw2pS2zRq/hC2f+7Dj0YumHs0zTH+GmXz+Qn+BXYf5qQ9bnCvorO4/rO/R3+EkueQ7+UkF54P/CzkM17z1sWY1Iv2J9vPNuy8s6YaRRq2UTb/Y7j5KY3JUqydV0l+wwuHX4vcTz+AVvUspXvgPYJvzPadmuQduRE1VAWeGnz2exaqejPIEDFBHbyf8FuR/QZPu1C6s5aeghcC3xb528ddb/JeN9CxXP8nIdcNuDl015J3NA7ec/gJyBJ5IX2N3hYR1o9A+NbIkXaePVvXSGhPgKfF9b9OdUv6zy0tpAZeAlf/CeWk5YP759MV8M7DX8n+nvOrYla59hJMhjcDPsuZTuOjB5wSF0TBuwQ/FFl82YO96hurKZsXAfyzyC1KzpM0Hv+mQ+ANgT+I9b9s4R1VpRSaA88dfhry020D1z+1iSDM/wCfnYdt39N2x6tbyDB4CvDZ73nNUzmVq1xPkuG5wv+JPNZ7yvozCs2U7f+f3P6fmFb2cfbLNNF+GMnth4uGtfH+E3IIu6/n4IcgX549nvp6VpM0eJOwfzKRb5rHWj1fdZmw9304fJZfn6nYo7Y4lbDvE/a++7N+kT/X+63OIGy/ycAPRbY/bxlWRMW1p3H7Zwb7Pf35NxrG1hL2/r6DX4L8adfLJrfyOhIMrxn9eYscPePhilWmxUSli/78OaTp7aoiLmD77Tb3/TNwtuPbmC2F9C68ePi32b5QN1vXnlkk+v5k7y9731XfZb+QVs0kYfAewGf7LjLW91tw9yxiBs8H/iHk1XG3mm+KS2vLwVOBz957j94RP6ruNJJ81g/41chq7zdN/Pyot6AHcZ432rQ+jNa8VUn26CHshSxWfuBnR1IldbPXWDz1R03YsIsVa967igtfIp9cVD1U/WoUccv3dDhuWhnmMHTkeef73YSvkRVyhNdbQypog1an5wS/FvmhJz07/78kGgJvIvwPyDbwA+E9gM9y+bApc0oUf1B51OsLn/0984aMdTB92C7yleD7I5+GXwPPE34O8spUYajng1ryDfWawv+CbPxV6fyFuEziB28M/DfIOkrDdw9UCKfTCjq9UvhzkWdNG5mifTmDFMA7Dz8P+dBKd105rUziC08Zvg+yNep3Qb0X4DshW2T1q2sZGE8k0A9P+N2RR2j0FmuWLKfvOJ/9Pbv7hfueV/hIb8AzhW+NnF+ec14oJSlIRb0W8BOQ93v3em1896GoPyqc7xhcMrB4Rxbl5+cNsvqFMeuOl70io1FvIvxR7O8Z3Fu1+HswfQtvFNd/WUU9VfPz+eQ9539A3lMSaZdofpYyPxf+RGQ2X6/hjeDmR0Ip/obSw2IaAe8/bj6/+LzYOeekjGAKvEL4U5H/uzjo1PPiMNH5jobPfu9P4483qY/9yFtu/gOQdY6oXmrQrqBK8KLhKyAf6miw3fE2R9T/UVz9vdLuzpwxtYLMhWcAfzGy5azg26oJP0h/eIHw+yBHof9B8CZz97em1yTdF6o9tVfAM4K/CXlkQH3/qNkdpBrz4ga/Cbns/o7rfi+6awvhqcJn8/rmy8zN20NCyR14e+FbIPvEnBAsyo2j01BvKfwZyL26GW5pu1lBg+GNhc/+nsWBS3QzDxeSV13sn8XXq60t91+nf1Dvc/gsD7u1oE96cxwNgDeB8ynq94HnDz8RWentl/0j01ppIzwPzj+TaeEjHd9B3OENh++FXBiweOCSEdU0Et41+L7Ih5z8142MLKT58G7BL0b2dHGn7a8+Ux+ufnbf6Jru9pM8kyjbl2x/ZiDXOesN3DijiLTD84LPstnj5kn3MvoJHOENgf8M2URj7a2lSr0E1+Bdgu+I3HFnaQ9T/1jR/v8EfxDy6ONjZvrvqSHP4Q2Ez/q13s272zjVMvIS3mX4bB+1BL0sfXS3kcrAi4DPfu9F+wfbeafjiSdXvwc3P3Hc/FDWL731Tq3iX0g/eHHwhyBX24yQ26bzg3hx9bP3V7vaKfD+VQntvfDWw1+DHFWp2zvKTlKgAk8AfyCy6Wyfn2KbewrY/ukL/wVyooWYgc6uInIVni189h4M0UpPn365kA6A9w5+b2STFdKrHy46Rli9svCfIN/Pvfh31shIch7eKfjsvM8vt7A4dCSTLoBXA18bedlI37Nl4yoIm0c2/2zf1YfO6x5h10QfwrsF/wXygbK1BgELJQXj4aXAH8veg+x3se7GacQb3hRu/1T5yZUcOtxC9sMzg2+OvHbGuG6qRQ1EDJ439/5ecBytqdKSSlm9EzhfR99OzaT/Z9F+YPP/BHmjvVXejKkxlJ1nOHx2HsbeixeZJNRRto+nwafIZtfEjHqubSLsPWHny74ffn3u1Wp8tYim4b6ehZ+OfERPZ+Q6s2+E7bdJ8N8jPzbqp2ue0E4PwjsL/zLyGZVKu6/vk0Xvbw73/h55EmN391sJCYM3Az7Lp1frGi3fUUwM4R2Ez35voeeppj3WT0X7mc2nJPz69gU/NzkWit5HRfjsvKMUX1Va/moRvb9sftj+jE+SbBLcqiEGjk/zR+4uC7PO7Kt+5nF72C7k0qJjV8wW5RJTvcwqzcmFYey/K/YizzffvWNVbiMdKz257nFNVpj+lJrfUla1YeLIKnIOdro760gTvBFZnX4zcqDm0tTk9Gq6Gl5P+GuQf+a8HDNhbAU9LdXp9YV/GfnH89NfTvQuoc7wnqP+O8h1zqcc5L80kSXwpOCvQlbfu29Q5uRosgWeCvzbyDUrLR8Y3BdQFadObzfqn4R8dtSZvmRsB90Nj/139XZk88XudqXKZWQD+rEN/kjknyMSplvqNRLmr4SvjLxg4q6w9qgEup7rz1rkxe129iOthcQH9Q6B/xh5Q9OzzO2538hDeJHwryMPDPTYpjZYXNsKHvt3+hPIdd+MT/RcIq0d0aPT85/c6acjfy6Q3fT0QwXNRr9V4FcjyxQWBRsq/yIr4MnCX4cccqdujNu5NFqIepeg/hJkORu9C1/OZdMGeCPh/0b+U+WvV/6ylB6Ex/5d5hDyNTftgW3CUFKEesNQfzNy48pMMbszWXQ/+vEf/B3IiQfXbbEd8ouw/syGb83+Hr8xudfqysg71LsI9Scjx2B+2LwchK+OXCcRFPcy/g9l86jCzc979GcVvArUvxxZ0eTA5qTcFhqDfrRj/hPZfdiQEmt4Op8YwWP/rsTuM5lkNnVz969UB94n+IrIF3pFVNw9U0ynot5TqH8esq9Z3tirc3OJMTz273r7kCt7vJs2JyaQmnL+WOQg+aT3+9QltUfDU4ffF/lcbJDx0Yh6chwe+3dbS+Tur6OH3DlSSOJxnpnwB8L/vLXxyLsXdSQS/WhAf74g10pvLxxcmksN4bF/t9qJfBXzMwdeOfwFyPTwO/MJb0tpGrx5qL876v+E32fnORD+Ns6fKP1/56cV/v4f52Rd1YtIEPwnqN8eua903EK5N0WU3Vf27zL7kQesCFhMVpfR6/DGwXdHLpCNaF/wtJJcRr1vUL81cuH4ZXJjx6SSlfD+Snb6y5FHzbl4bdagzyQG/X+P/pQgSzx+OS3HLZXqwLOFvxDZdZAwTSqku4Dth76on+277PfbZwwbV0AEqHcl6s9Fjt7l4psr+5fKwtOE35vdN+uvX0KcHckueGrw2b6Y07py1sBl4dQZ3nD4T5FrU0rCvYeU0PXc/C9Hnh344b5/QjSZA+8P+jMfucezgzLVcd8Im/d89GcG+71t5LS5cSHVgrce/gRkiXPZkosuBYrmh/1/I3bfPly4+PeWZStZCa8DvjHyrieeWzMe1dNabj+z9/jEtJL9SnZ19AK3304hnzL422+FQq1o/r/CH8He4+0JDT+v+5KtqPcZ/N3IpVbjp1SNj6VH4LH/z2zG5udu9GyrKTl0E7wSbr8djJhv2vHrF9WGdxH+UuSh8RZKx/t/F82nGHyW62XnnNp5RkLA3vca+OuRB/86+sSlUFp7C7w78Dch9zraeNwuTFKgD08GPvtesQ+6Up1yuoXYwGvk+q+9q++JwvxW+h39TsD9FSBXTzjXsV+zirD93w0+uw+zV0TM7vjf9+Egts/gyyHnzep/fH5NBk2BFwE/AHnfpGmyNksqRefL/j/VaeTYdY2mSQHdtEvhrcL8VyMXhc7cdz00hHrDq4cfxX7PZcK+tIn1lL23bP+z9yVr1H/erdV2NAaeMvxX7D5/bVFouZZCJdBvgv73QX4eMWdezcliwr6v5OFvZfuheNo3hcI4mg+PwE9HfhXv3GPRu190D/e+b0M2qDnb/K26jzbrB/v/SGxeL0X9XS52MoWwff8L/V+BbD448XSfKU2kzkLpSmtOSljlG6tlz9MrwlKQ+y7NqNYIkdP2FozWXlUaG9ZN2kdxy+6csLfIBRETe7kr15B++vM9Hsz3CHv2xs3JbxUNC0A+duzntmjbIqIObz18XeS8Ayp3LTRe0XGhnZ4n/LnIyw738pG8nUdHru30Qt51+nlrOvNsnSfK625W01fHOj1x+GXI2SrCYduUewiaUe9V+IrwNXSJwY6DzWTn6k5v8utOXwP1Z7od0/+4t5vAAvVqwF+I7D/7yl+3KDHt6/Da4d9E/vhR71qgdQ1dtrzT0/Dr9B+t6MyF17RX+6i0ko+Wnd6ft53+B+ShOjHRqw+lEjd4g3t2+i+Q3c1VXg0dEkR3ox9P0R9H5AUz+q1smpBAlVHvctQ/E/lNyaC/HXaldAS886h/NHLmwKFfvio0EgH6kezf6f/U68wlaeHP+s8uIxPhTYY/Drl4o8JgN6tyehzed/hm7LynPz36Jz6c7lza6T3y7PSXIKs6Z3luFyulU7j5mY+88K/EiIHZyYTA84W/FPkZfG/UPxHz6YwcfnX0+MmjGkXzk/u6009ENtBLqG9ylhaowvOHr4tsk/j3mGR2DdXE/KTDn4wsPd2nan12Ow1FvZ9R/2tkEjrd9taSKuIFTxHny7If6s9d2entxPzYIvewPVSWQKvJLnhj4M9APuI9q9BkZhXZBS8A9W9E3lcXYKUx+j/6GPP51afTz0Y+3LjqRbBTPN0D7zf6MxT5T3u/zIiQAqID7yT88ciLJ1o533P6Redi3u+hfiXUP8RrTFlRbj4JRL8VUX8r8tH7A0Pu6TeTwfA2we/JzmN91tGePk1EGfU6YH5iMT9nTy7T8YsNJHNR7wb4i5FdTI9qqz2vIBnYD7VSnf575NfwL2NeRuJ8ryFTP3q2ZcsrOgzeR/SnAPVPq3OJDbrZQGPhhcG3Rw70cdJ3C60k4rhPzvC3w++ZWT7NP/cnfQ6/D/ZDAnLSFavdRX41ZCe8MehPAPLnpRcz31b+JrXYBzkBnf5Z7NMrd7ptnT6xlaag3gHoz1/k8mfqyi7nCkgFPBv48uh/y/ClM97Pe0FuYt5lUf9X1K839oG53eREqoF6beBvRVbVNQ8rulNAZ8O7CH8y8mr/iOpThlV0L+YnFee7bllnDslOWRW95w/9hXq/ov+ZyM4HBxfGqDdQDXjW8McgZzwtnVbg85u4w3v3qtNfg/kMrAzyd7HJIPtR7wHUvxP5y0/lzR1tRbQR/RkPvwB5e+P70bHXsum5hZ3eVNSftbgzL35a56CSHUz3wTsB3wR5x8VhpdW62cQA9Tpy+6f3grGfdYZUUg/0Pzmw03+L8zWP8/J+K/2GsnmfA3828uYZ4x0zTv6ma+Adgs/e4wUyzYtfxseQFzjP3b6dfjD6I5dy9oZCZgF9Ai8Y/lPkXFu30VnCdKrEnS/rv+7fbBPnPiWkeVWntwT+ePiD/izUmvq+mhjhPLfjfA8h76p1jfh7vplko9+34Q+FH2a9trm/TyOVQX+u4X03wN/T29KnWX+xjPZA1FsGvwV++uu+zh0uEoJU+L3gxyB/uNF718P2ZPoa++cD9mcq8p66hsOn1MqIKnxZ9Kcf8kMl9T1/2iIp229T4dcK/u/92o19Ntyj09+zBPt05IHlniFB9CLqPYT6We5p4xDZTSuPfIX3DvvnDvKPmNHGV4aWUwv2vYb9rIfz8NJ1J7UOlaQfvkdGYv+IIVtu75NfmVRGwwX/dz9XI5t/jjYoi/hDj6Mfi/H9UIrz9bd8+/XH7wbKvgdXct+Hkn5bL/qfTSBO6M8YvI/eyKXojxfql8P3jwDnnZm/ZFFvjTyaBK8/6i9C9rZfsHBrUCBZBM8e9bPvidz7ZSN+z60mHtg/ipjPHcheK14Xb0wNIf8fhHRcjw==AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAWwwAAAAAAAA=eF51mHs4lFsXwInKJRITEal0oYROl4Mt0oVcyjDkPmbGGEOGQUSpnKIoQkUqqeSSLnIkyZup3KIolzq6KqWTDsKJXOt83x97L+fzPN/73+9Z7Gc/v1l7rbW3mNj/fmfu1Ri90nFDhC3rOQHutVzgDnbdNo98X+DA8S6f5e2hwOnOsr5q4uHAq/46ql4cwwKmP/UKZSTbUYRlas8FKrq5AP/VVik/hesL/P++GIsMzzfGeaJfrdKF7TLWKBZzmiRVf1zeC9jwjeYD32oOOoCZnhfqKsV0AFb9tsFYSZ+FfsMs8AlFWjauFGGV2D0rV9G9qT2YG/906tA+4AnrFwfNsH+Vtxntx0z2t3cS34y4u65NvETUqFRrvyDTC93CbLcjq+Dx52BUjPkux744U4OHyN+bd5quXX6Fj4owTwnM2xY7JkS/Y0bRJSLFUAFwZaldMT2EjQox17rNkpFzYMP6Zy7ldynf5kOc7O/GJHYQe6xLX3FP5D9tmKc04Ek5YnY2Lu0N03VGhN3/fmg7bMZH5O/vfG5siK0MQvaYbddXWX/d5ILomGl3T4w+ecUAZt1x27sucB5F+DytLXGuixusp8uMdcmsdUZ2mMn+tk1ipbfjP9qTKkW9Yq3vpjeyKcJ3Kuy4niMelCJm08jBn9XBXGoW5t1fuAsPNzgBn23nVrnaeiEFzF/LlVuqLvOAaZ0vN/0ja45mYrbQfsz0uS6A9W3Gq/kN5jyKxMn+JvMsRvbzjO4a0WVEkz9eth0pYj6h+IulwnR/ROKrBXGmMnkBSAFzToGO2z82AjQTs7b1mcDsZwHAB+ixexqygpA8Zrd7xhslp+wGHo2oXtkttQPWW7/kW1RnpCXEyf7kJrH2B/dzL67VieJluZ4K5+yppZijVt7TLUl1R4TX/3byzoLnm9ASzNFjGUJBgwW1GLOUZ3s8/+FWRNjkk6qYnGsEcJFthcw330C0CLOYuVsD5yUD4qxTPY75lT5Ii8TxN5mdjmg5pTY+FpUuFTcfzrWhtmPWeV+b8v2iL0XiposfmtzO5lKOmFNeldUF5oZRDMxxyQsUks5vhbjhQwefaUZ0iI+WS4YwEvwRYVrksbwLZlsgvnjX3TZPhxDKATPZn/0kPmszNt7s3CDKZXwb3b3UFhEW67iQ0WSiQJ3BXDilWLcz2woRjnSNkHlv64NOY95+adTMayAK4mYnxctVbPxQOokrvVgk/cyJIrxBer/Z21QO/H+MjhVr0eEQiJP9pU3i4cUfT6ZseCJKb2p9/l7giQjPiDldl8bbSA1hPjl8ZWNdqDciLJkTddTh5y7qO+ahxnfndyv5AcvQ/GUK6nhoELOj1rfqdKlA4AvVqp/cvngCi0lFHGDXaFLA+BuYxP6qr9Wbkp+IUqkKVV8fDhWAuTtsi0B/tjNw2BLh9u4SJhWIuWBJ8qnELjq1A/O1APPBwuOWiKxnwMwLWywbSvlhHrIuV/JSPQTxC+LCr/176BCvE6j8PsaPoPiYyf78JrFgRYLAvfUU8C1L89Hq74XApiVmIyWiMuA9y/W7n+U+AO49+cTmqX018G6VfWetWbXAc2+ue23R/Aj4ua+cbFVePXDump5lFe8nfu9j6m+Nzfc+EZlleEWl29hCP48e2HzjaPgPY9IPeYzTC+eMW0O/uXrYVHnTkQ3QPzR3cdOfLHeAehnP7foz/xIL6l3Urm7F/WpWFKk3IUel9iwJsEPk/CpsG5ldEOOJMnA+0tpUPHybtkO+PUKKUweMNiDye25sDF67RdIDEZ8WdevGByS3ohLsU6l3KCBxCh8Rn4v8dE4eVrZHxOf8ini9X1pXIuKzqEVBbmO7J4rEPiWbdYIHe90odewzhm82L+qKM0V83g9JFTfb0lWWh30q+jv3bzNwQUnYJ9/G+7qDjzv4ZEpk3Vq+zROR+aanXe/Y1Hl+4DP/Wspo5uet0H+/zE9VtxyZ8FlnEJetZcIFnxHRGu0LOGLgc+29E+IfZbyg/r3m0fofjLGg3iyq7nh8s2jCZ+GpnISx3xcjAfbpZXnj9axyHhJin6vmeZ5I+sEGn5enp97KsQ8Gn7e/NI75irFQFPb5IpU6aCWlCz4TwqjEIzE88Fnwt56MQIxNkfycsS3p0VJ/JvicP2j2KurtZork596b8ZsT1T3ApwI/pf+LjRB8WrTcTfKfxQafI6e800rNBDBf8fUMjzZnccHnC+M+I5UBS/AZsOl6oEaSL/g0aDLkDtWbQr9bMZDbMd1FCP3h3TAvuaTAC+qvmMan8jszaeCzQ1i9k3HUFeqNrviqqG5DP+SPfSZ3fsq7P98HkfMeoqsveflbBDLBPtWK13YceOiNdmOf8Reb9d+XeKCv2KdLXoBGAm0n+Czz4lrG17hRatgnq+oZ6oxkg8+C2Z1fDgSaI+Kz76ZG05ASF3w+O1vXbDHDH3zOr+4Pr5PioEPYZ/QH5cEsTSH43NvXtXGKJg8xsM8f9YMZBh0T85Xu+nfZtoOBMH8kd8u/lc10pMi8sCxLzoDD9wOfZzl9X+0O24PPwpEfLj9+zgKfr5bcYtzP8QGf2QVP61I5IXDev75/cUon3BUVY59jhz5/LG/ZDT4zOmWvJxkEgU9p7dxqaykf1IN9ftl0wiRBSYh2YZ+OCol9B09zKFXsc46+4uH9BRbUM+zzp1Z9ddqVHeBTSs1hvLpvIj/rW9MZH0bCwOcDvy7xqXu8ID+Lc+3kqtWCwGdqXNjaYxHuMA8PFPcV369ciYjPJdIJevERIeAzvVhpy6jihE/dpNkmC16ywOdq4zraab4L+Cwom+rUR2NA//WMaLt7rdKHIv0rO5Z3cXXyTsTHPhuk64aSrJngMymyXZ6jEoIQ9plZuev1hzfWKBL7PPdsteZBRjD4ZKqlbb05yAefxzoSNPuPMiE/+346JsnQA6gW7LO1h68urctHOdhndHnd0qk3zKgE7FNYdDl+7DcO+LQrN2Mo3LFE5P6V+KmcmcsKRAXYZ3KwxFKRhiMi94e2P3jhZWkcmOdL78cZHhwQwjys7bvv5dhHNsyj+/hq74zE1sA8t0FebYVEtj/MT/OfR3nTWv41j1yPHjeMVZqYF57/TLbzMaeCsE+mi0pwqb4R+DzpGM/+iy2E/Jzq9Hm6myoLfL54wx4+PMRH3djn/q6OmjFeKPjU+5ymkRwQTM3BPqd5y13tnbMGkfz8fsGeLSfHQdnY54UpjuHuVixEfNKKMyRO5ASBz3IGd0FeK48i+RmqEFJf0c+C/KTHud7Yaq1AkfzsVPaO69rqCfl5T53X8VQzEu4npuLXjvVcCIV5ni420yvt3TZE8tPBmbfe390DfJaa670SxPxrHrxtIbqVJUBkXtpU0RQqrcyg3LHPuT1V3bHvzalC7HP7OvbVMEMhMsI+o8ca/niRREcR2OfOyDPZEmtY4LPItO07PTYEhWOfBpE9c4v+Oy8Tn9GjlbeH4pZBfnLcR/uVfg0Gn8LPn+5Y525Bidhngqm791PNMHjP0M5U1rY0nUfFYZ/5h7rXpChy4T0gs9RCPJW5ZaIfDS08qBjkCv0oOum9zj4tIZz3Ns0AA/9qf+hHZ3JmhF2LtYD7CL3gxMLMuOUw/wsHWsw5rRzwqfypKV8i3B/y82JvUF2Lgwci+anGNkn5ZOAE/cgxq8ySNisYrcM+wyX1L61xcYX6Oc/SeZfrBXfoR1VipxvLWUIUgX0emR9LX+UxUT+HzriHbXaZOO9WgUaP96/2h/PeHDaCJJZvh/ykX2yZ4pynAj4PjRdetbVhwPtN1fVunWmhfvAeIinrtdO+xhLeI3Lv7aBWT/OiyH1+RfpsprrIE/Kz7baVmKWWF+SnuuzD1JItvnDeU3r42hGvzSfO+6qiJO3A2XDe+T6bzs8ddoV5X0r+l5MJXQsoUj9XHs5/FfeRjoqwT65mVMt5fSEyxj57r1tZDfy5gSLn/crrd/O4466QnyKd9YXn7vrCeX9k/6PTlMmE/JQ4O+S796wW+Ky3C7tyfKk3uoR9GsvVeCv1MqB+jv+64+r9ECb4jM69RTvUZo4OkvezU90VIjd38BmRpCcdelsH3m+OzHkUKZdnDz4759SaqL3Vpkj9rPVB3MGZVlA/aw42SdOG/Chy/92ZUWW/9qEJ3DdXr3j+RkfgQJH72xL+qeFl9ZbQj8g+J9+PSP0kTM47YeKTMPFJmPgkrDLpftQ86X5EfBImPv8DNUUs3w==AQAAAAAAAAAAgAAAAAAAAKAqAAAAAAAAjRUAAAAAAAA=eF51mnc8lt//xyUpKWkpI0mSltEinbudpEFRSQtpLykV+WrPj6LSLmQlGggp5+6+Nc1CMrNl71Eo/B7xOvfv8bh69OfT6zrXdd334+l9znmf2/+GroF2sqxw+JnKFZEeo4WB4CWKEvuOpoaTx2Al5E/Ae0PFbHmCGFGuxslz7er0eJcFonwE8iCwjNHP8IFuDwhjZU7ecf6ujU5E7F/PZ+/Xseng2B4fXv/1/GDw4exRLTW3v9AA8ADk3mBeWpFeyKRI4g8eybl/XM3ICSr1OaL7KyJ/xHh9RZ6hXwEJ5jw/FCx1WTxmsPEBEmgfV7x6oYzQ+51KsF3AKGEAeIhU8H59rVzqC/ZC7g+uX3VEV/FoAmHX+3DGC4Yb+1mWZdHHnPuz5w16p2Bk2qOaeoHvIvcEh8lbPfxlHka57/cIXBGtHpV4s5EEgT2Rs/e9pNf79+INPfk+nPHs/clim1y6rV70+dh4b/CqPEvbwopO4gG+h5xxwMnRczffaP7r/dj7PEqWlmhZI8FL5Y/hLSvrK1Tv81jJwmakkHH/yWZHai1+0AowQV4G1jAO+lYrkUNLwTM4+fJRdS0nJnyixWBd5CXgdYHu116kNojur88Zf3tz8sMbucWUXa/HyVdEOD8pvNFGasE85DXgvMfHiyUlxfhF4Omc578pKB6WFF1H2fVzkNeB7wkq5kyKaCfs+mnI2ef5cFBJeZJUg+j9JiNnz3PUW1a9eqoYT1nyxPX5//UWqp+Ty/x0WFGoAr6cNmrotOQQogXWRz4Z/H3NjuzLxQVkKng28mlgw8XJvD5mZWQCWAf5eHD5oBf2XkZVRAc8Hbkm2Mq62ujZ1hJRzp6vDZb6vfOOlvwvMh3MQz4FfPNC3jl5rwaqzRnP7md6ynp3eH00YZ9XFTn7PswaHeScovrw1MDjkKuDgy20rB193hANsDbn8936VDVwRmZfnsXyb9UzNCWEA7v+PkxoDs7/tFnP4HUE2QOeiJzx8H2nMoTRaXQfWBP5fvCh8J+SR1VK6VGwHnJH8A3LNQeTS5PpOrAccsYmgVnfZ7tVUUuwMnIrsNhph4T9ck70AFgLuR1Y8sS67NFjWyjjccjZ+y4NLbCJnVxODoOnI3cAqw80WC1NZHh7weORM94rcb1MuqyenAIbIj8N3kXCxodJtJD7XfVYTCjXVZ8HC33A+a7bg/pN6sT8I4b6Phj1X0zYtFp5m4Z7K6FgLeSvwAsCs+8muDVRxjrI+WAbsbRxavOzaDBYHXkIODAjI/ujZalo/CTkL8G6SzdYd3q3k0iwNuf51VGHP4/zbqFhYBXkz8Adu4OkZ+Y2UD5nfBTYf1vDjVHmnYR9HzLIPcHzH0iZd/ZOoI8593/K7j/1u8Xn1T+J4us/9aJNsK+rfgwQDgcrKfC/1bwvJP3AW5DLgH0jPlSXucTTDH43ayDPAiuNNO/33SIK9a1NQJBXgv/nNFCQnFBGksEjkX8BlyjtvDR7Lp/6gpt7d+ePwd9XGru3r/uN+tgmmIPxVWAneacZe7ZX02ywOnLGNS6ZzkpjKmgjeDbyWvCrhYfnGd6oI0r4vPs5388O6xNOL1rqSSGun46cvY97/LedSwJ/Ebcun5sE1qgbd8Di5Gy8y4YfdDm4pVd3bgCOiitr8tqXSkzBEhhvAla7GN0qbtdKPcG7kfuCH9bnj6s48JJYg1WRbwVfKtZoL/0uztsAVkRuCX4aXx/yZUEDZffbg9wPfHr4kgfPtcX5LuDlyP8Dx/Q6deDY0t78x+DtyP3BbrHkuv3DK6iPTQJWZ3eBJzfEajzyS6T7wQbIT7Lv4+o19aC1Q/gaXd93heB4lx+dAgIWPFMasD+vgAx53c17+nTnjLVKxhb18iwnP3D9YuQ/wbLtNVGTzz0i83G9K3JdsKehQ/u6RRL8VHY98gSwo+f6xW/MKskdcBPe7yG41erkBomKOhoHVsb4T+DqCeMTmuLbqRc4DeNvgwtL2/rua+7HF8f7bMN4afAugVpmumcTvYjrP2L8OfBejReqRpN+UUtcH4nx5uCEArV+i5KkeWaCP5wluCj1J68VjAS/Xz67sO8BOV73eiVLsKhPd94IXjroY3Xetq/kODi3d3d+BSydn/hj7dwe/HzwCoxvAj/4comu1e7BnwV2wPi5YAWfu+MST0nwXr7u5kF4vwAw3VFoLCjIIBPAvrg/j10fG2Gc+7mDhuF+zbj/M7DcSt2UB6bNdC/4PPK14Ot5xraFz+uJKu63B/dXADvZS2Xd8H5A1cCRyA3BV8xCj86Z3Exi6za96vmgiXZqGcj+Kh/EDxhXc598/k3L9/pPHGAmyftyW0rdtX8VUSDHDq78T4xn+iPPdebSKmJ5trP6zk4hmeWscWG0SSNJWTxv5fcCWV6A4YzJqztayZwm7drRb+1IxtqLM2TOVlD9Obyt77XraFvPC5PqEgqo1672CMNtUXS9V0O4Q5wEb9ZJd8c9lgo8lekuznMGSPJK/kd3+cwsJy0Kiq6y5yT4QdqjljoHjuJLlK9bWb1Kmh9pbqEgsVCCH/Mz/EDMfQneeYUd8xwqh/BkIu7VRPPFeZHSY+OHGjTR8sdOOumPBvILLT9HZV9V5QerDNH5tl+Wv+y5+QnFTzXUoXkZ30W9kY5t4OlenyvON1KY7pLuX0cnnGnwU9sgw/My+ZpzsCONqGhcq5IOSCNuE1OKUrfHkyPPpJVNt5QRKr5p0NchA3iqtTPMzc+q8dRLE4yHtsvybB9/3qZik01PJN+LzG4cIMz/s9DzURWeBo9LCss277mfxMi3yKbc6CfcYDMzz/iJipBxL41HdyYHvSYS1qY7YmZICcMXFTgO2TtC2Bt8efPD7y86aqlR4NPo1996CR9/WKJ74YS8cAnYNdo/eeyETnK+QUoh/Ji40HdhRGO7+1Dhf+D99c5eS5Q6iHvXfqhD0L1/Gii8D34/8pXd/NHNZEBX3fspGNy1/pQWyoKldgQu9SLfafd+vU4wsWt+7ykMBxt4vBwzLOwR7V6PFgvEMc4YbJP2Q/pNfj492+VznCCpy+88wUVwr76aNwdKNpFn2A+rYn/8FJwwa+eOAks+ufeP/V/U7tSUGPWof+6/AnRqXooHxFAF1HUlrK/lwWNNiI5GYA7dzdaTWB/uAM8rn/Kp3+10Eor1jAbWN2w91eA9Kdxqy3cqhvnaBPNzO+bnyAQ7s+KQd+QcZ345DV6x4O70quAKmoJ6qY76mAYeIKd1raRHLo1HPZiE/+8M8NW5OQp+HSn0cltW42et/nw/h2P37M4o8/X8zng4jpfm57nvHK9V0UmPc/w8CW7oqVwU1eck/QAfN8JPxoYNp3dn2j6jkv/wc2hZSa1bZR5hfj6Fn0vBwWkRKlm2mfQGfHwCP93BLwRxtlM1yuhV+OgOP93AJxY93Zc+LZmqwqtR8FMZHOiqc0qjoZ1+gI/T4ecbcL2p2e9bKVlY/xQLemMc4+8uoxNN6+vIbfjYo0+3n0/BdXPepUfVF4r8VIGfjKfIV6dn748nrF/iwemf3Dl/S0t4LZYWwkfu/np0wOmoW7wCwtZNmpz9oVlDr2FXJwuJDXxUgZ9bwHlaGyKdNeqIED7qwc834OP9vUutrjQQCfhpDT+lwEflRiw8P19IePCxEutDfXBqxgufVO0iUgMfCfysAs8e4Wr8ZW85TcN8Mxnz4wdwyqsrOZ6bhUSpObzUs7SeNt9/VORq35uv+IddG+klQ02xZKMYwnwshJ+snub5BvB3FCbQ9/BxPfx8B056f+PjlOhE0g8+voSfjJ036Hzc9S2DmsDHUPjJOCno1QIXlXzqBh8D4CfjVTOvELcdDehPdQi84KcfeOKP4yE9gt5RFXilwvFTeeGqxqAlVSQMPqrBz1Dwxv5Ni1wuV9Fz8HE5xrmAjXQcSmSjfpOd8PE+6qcNOLXvwJ76VmWE1UtVjp+2mzsVit6HEm7/0A9s2FSZ1DkshTA/uf2dqoS7kUGRGX/1T1j/pu2HUnlhdBxl+23Wf2D795jtaV9dY9/TCPg4Hn4yrh34xW/NoljK9ns28JPtB+nFibvljXIoW/+b4LmM39gfe/Zj9nPU///3swT8PNrgh+PNHHoI9TID6ysX8PNrultWzoqnhe5yjhW382nlTNOPI5fUUYVjJxePb/1G7/vcVZCSEucfYz7CT2ewx9yTOpF3C+hH+GjJmd9Pv5R5cPZGCWU+voKfMmBzi0s2Hh7pdMU//PROOCDrbJVL/uXnrBah9CJBMfGHj97wM4DV08BhK30GxRM55iP8VACneP3OTb5SQELgowb8ZL6KjdfXc1Coorfg406M8wKPbA2zGpVWSMxed/uYgfq5HWwya+PhTEEFDeb4yXjP16NtK4NjRfWTO7/rPe40lbH4THPh40T4ydjv5tRNHVZZf/XPGB+pVZ7oNfQVPQQfWf+I9ZPOH+xJdEPuUl/4OAR+Mk5cZWD0IzKWMD8t4Wdf8IIYyX21EbnkKHxk/yf24N+Fmueyxn4lJ+FjAvZHZ8FDfq8s+fBbgP+/LEEc/PQFJy9YUxm6oogQS8894UM7iKTOBBm9sbK8Ll72m6im9/E2ks0hTpz5nc337xzDP7XKvaLMx03wk/kqmzDjrqtSFB0MHyn8lAXrfbSwKDGIEPn5DH4uB8/4aOG0MTOdsvXnA/jJeN783xPfLyqlT+GjL/x8Arbt5fHkeR83OhxeKcDPYeDPUWdlXdYUUwof1eFnBDhS6WbeM8dOwvxcj3G3wa4rrcytB1ejvxSH/XeeoB31U7nh/KatYomi8xk2v7N6+nDLutfJBonEi+Mn4+AQxS03b/nSb/BRk+OnzxXN6CGnCkR+TuTM7zW7PunMW36OsPo5GX6yfujgt32m9AupIF7wURZ+ithIYXDa+1NEHj4egp+s33YzwXnLol1lWN82CVif+xD4QMzPy7xPpaL9vxjqZzDYVtwkqd8xS+IPH2Ww/nwJdnhYr/hML5j+Nzta7XpYOfUyNLusHyzRPb/3rqN5+lL71hfX0LMcP9n8fiJvn1OwRSF594/5/at3zVL1+W1E5h/z+xxfV2fx1c2E1ctg+GkMXt0Y165+qTePrTeDOOtPk3sH5ZsXFZJb8PEO/GRsqmjvqKlcR8bDq4nwUwO8busPd9UJzcQPPirBz0fgio0tq2ve5lIn+DgB4+zAaot2Wd3hJ1Jr+Pga8/sR8GaxKfL7R1SL5nd2/snOG90uXYiV0/ekd+HjTfh5CyxhrzSjkS/463yL8cyLHnOmjsskSvBCGX6yPl2o99L4MeWp1BY+sv49Oz+Yk79vi491rKj/PBF+Mpb+JtGa6fyFdK8n2gTz4CfrnxqqXDtSUFBDWX+Q7cs2ggWnAgwM6nPIKvSLvOCnAbhv3zJPN7syMhs+vkL93AmeLrm+QXtDPi001l485llvvs+f/dGowfwuvi/OX37m0PoxMg2Uzee5nPndVGrtArljtaL9EfPzLdjbe2i98ew2OvAf9fOF7i9D/xgxPnf/zjip89INq2Qx/k34GAw/b4EF7/7nctpNgs/mdz/4GQQ+oK8qNm1EI1WDVxPgpzq4/sG865fi6+k9+DgEfnqDY8Nuzm3eLM5fCR+VMG4D+LGnldpq6TgagvopLtXtpwf4yMb2lv5Pw0R+svrJzvcbDR1ejBdPpw84+yN2vkvt7516ovmdVHH8ZOy198xtk/ul/6yfb3Zu8y+OyiVOnPn9CPhWRNl77apGnN+LCRXgZwBYrZfex3sxX0k5fJwKP1l/Pdm8T1b46jScTzUJZuG5juDjD/3fFzWHUHX4aAM/B4H1SlTDVfjV6L9mCVRRP5PBK+MnGR+paKI2k/jBbwbI8ST+zO8LFXlKwZ8jsq72553+cV4+51WKqL/0DX46gr32bSJv8nIpq5cbOfWzKn388PrSNNH6M4qz/lR9/kKvZUIlXQAf/eHnQvB63rWTXw9+ox7wMQx+3gPbim12Sr/5lkbAxwD4GQaWsBrwK3xuM85Pfwpmwc+p4OPxYtucRuVQth8aDj+DwBn1nUa1IxvJbvg4BuN2gocs2fWfsqMYzwk++mN+Z+vR11ZvRmy9+p6y32uM4PjZEuAW6HS/iNz+x/weZpBwQcagkbLz8rnwk/GnQ37jz77+SkfBC3b+zfbzSWkfl0a5ZlHmozZnfl9zxGPBO2El+mtiQnn4yc4XbXm37ry6V/3X+RE774o5aL7spdFPys4rpnP8PHHOMi7YIZn+xnzO+vdS8PNTypbl8wrjcL6fJVCBn5lgr5KaPic9jpBJRX8K5jna64+fGwbx9P+sPwuaicWWnvOmGIrxHDnzO6uf8qYv00aX1JB/+bn1+LrsNPcGwvpJYZz+Uv56zwPq2ZXEAD4GwE9DcKLFOt+Bt9rJFfj4GH5eBeuWTSo+tLiVsP0Qd/+ue/CYj5VMFRkCr+Tg52CwaVpv8duLGglbf+rCTz74bKn3AJmQNLoGPrJxrB86a904e6e31VSI+XwO/MwHf1kQU7R2czll9XMUZ/0Z1rpk1IUDGeQO6yfBT8aSbaZroyUKCesncX//MU/S/+meXvWi3zfMgZ+My95VJ57uVUu45/fWYLOGWZJm93vw2H59DKf/6W25rGSudY1of7Qbfg4CE5foxWL2qYTN5/3w3NXgzo6NyW52GTQGfpZif/QEnPTxrt4573rK9kMpmN9vgvX710xLo010xJ96SfrwNOcLQwwkVXkxFo5WZ7L78Ywnipe+S/pM2H4oB37+D3x9ScrXh+6F/6yf4ZucDT9PqaTSnP6nFFif7Gis9E0R1U8f+Dkf/LY1Zu9R9XjK6mUI/LwDjo18MtKhrZh6c9afHuCqcXaZJqZxhNXPGfCTsZ3w5ZPp94roS/ioAz+Zr/5rT9xLKMmk7vBxGca5gt89W/A1/GQl/InD+XqeIAfs5nU92y2xVbR/V4efz8EWpn0LHy7IIPc5fjJOMo90lcr6LOovsf17HjjpopLl/HFxhPWTuP0laZkJ6XtnvRH5qcTxM3R9qEv03mgSDR+nwU/WD52vPO/ygW9povl9CvwsBlsaP3E4JetFWb3knv8SO0XbZu86chU+1sFPX3D5sMGbEhLLyQj0O4+gfjK+EKWZecUzpnv9KS3Gb/2UWv+xQ5F/6U+//lEv/gr7zcrHdEupPXzMhp+Mvbc2yfuMKSVs/cnOjxibaMj6BL8qJmy9yfpL/cFFYnVpg0x/kcX/WH/W2t/envqwkbhz6uc1sIdmS+jc4w3kAXy8y/GzY/DWPW25KVQeXmnBT9avD91d2HpctUO0PxoIPx+Ab7vMD8iY1oN3GD6OwLjtYJ+N+9da3K8nB9l8Dj9twMO+ztibotZA/g//tHLIAQAAAAAAAAAAgAAAAAAAAPgfAAAAAAAAHwQAAAAAAAA=eF51mEGKGzEUROdOyT63yZ2SG/gIWWclmEDDwIBgFt0oBAsH00cIsShMVf3SxvGL5n+1Xkv68stL3b5/+99+fKl5M/7p0d5C/258tT3EGca/PtqfEH8a//X6v/0Nec/A/bnxvebNOOah7t+Nr7aHOMM45qGOP41jHuq8Z+DumedBeTPO86D9u/HV9hBnGOd50PjTOM+D5j0D9/ca81DzZhzf6/7d+Gp7iDOMYx7q+NM45qHOewbu65jfB+XNOOLW/bvx1fYQZxjn90HjT+P8PmjeM3C0XeJj/Shvxnl+tX83zt81zjDO+6TGn8Z5n9S8Z+C+T/O6UN6MYx7q/t34anuIM4zzutD40zivC817Bu7nEuah5s34ivsW+nfjq+0hzjCO73X8aRzzUOc9A/dzmPcH5c045qHu342vtoc4wzjGXcefxnl/0Lxn4F53YB5q3oxjHur+3fhqe4gzjGMe6vjTOL7Xec/An/+Pf/E+qbwZxzzU/bvx1fYQZxjn91jjT+P8nJr3DBzxLsY/P8b1M8zbZnyN9934GtdHyHsYf3R//R3yXsM4b2E8d5k3f05w9q9c67dLqGfQX8935NXz7hL2/0vYDy9hf7iE9YK8/p7rfICrd56Xzbh65/3kI+Q9jKt3zns1rt55PE/v6T0GV+/Mm3H1zv17yLuHOMO4euf407h657y+j9XeW/CO51fvLXhvwXsL3lvwjrzqvQXvzbyv5vsUuHpnrvesLdw7NvMOvj61Lt1CnbaFumUz7+D1uYa8fk6pd3D1zs+5GVfv4Oqd8x7G1TvnvRpX7zyep3cdn3L1zrwZ53Fpf73fIa/ed97NO/j61Hr43byD1/US8nodUq/3HtY7nkfXew/rvYf13s07eL3ekVfXew/rvZv3VGeAq3fmzbh65/56T0devbd+mHdw9c7xtc7/CHUv8nqdqd7B6/MQ49b9cjfv4PV87+Yd/NHd6jrk1bpuN+/g6r3O9+TqnbnWdUeo6w7zznm1rjvMO7h65/ha1x2hrkNev0eod/B6n8f4dJ8f5h283ueHeQdX75xX9/kR9vlh3uv36cnVO/NmfOV5C/17yLuHOMO4euf407h657x+T1Tv4Oqdx7EZV+/g6p3zHsZ5vJr3aly983i0rvN7ILh6Z6513TXUdVfzDr4+ta67mndwfu4nV+/gdV2HvP47gHoHr8935NPzfZp38Pp8n+YdXL1zXj3fZzjfp3lP93xw9c5c73G3cI+7mXfOq/e4m3kHV+8cX+9xt3CPQ17/nUe9g6t3jrsZV+/g6p3zHsbVO+e9GlefPB6t53X9P7l6Z671/D3U83fzznm1nr+bd/D1qfX83byDq3fO67/jqXfwuq7D32tdd5p38LquO807uHoHX5+6T5/mHZyf++XlHwTYvMk=AQAAAAAAAAAAgAAAAAAAAAAZAAAAAAAA8AQAAAAAAAA=eF5d2FUY3nUdh2G6a4yujbHR3c2owTZ6ICAiE1QUREJFUlRQUDoUbKRLpUVFJSQVxCBUQBosQDqFA5/75P+e3Nd7Xb/v5+C9nqN3mmn+/5k258jZ89g8JY/Lw9PddDln2jknz89vpT130+dcaedHeUP+OO25myHnTju35D15a9pzN2POk3YezCfyobTnbqYckXb+na/nf9Keu5lz3rQzbT/wHDld2nM3S45MOwv0fslccLDnbtacL+2s0Lu1c8XBnrvZcv60M753k3PTwZ7O9LJgLpB6OzW/kkekO70slHb0dkF+O+2508vCaUdvP8ufpD13elkk7ejt3vxN2nOnl0XTjt6ezL+kPXd6WSzt6O2NfD7tudPL4mlHb3Pm9GnPnV6WSDt6G5MLDfbc6WVU2tHbOrnSYM+d7kanHb1tk5sN9nSmlzG5ZOrttPxqHpnu9LJU2tHbhfmdtOdOL2PTjt5+nlemPXd6GZd29Pb7vC3tudPL0mlHb0/lX9OeO70sk3b09ma+kPbc6WXZtKO3uXKGtOdOL8ulHb0tlQsP9tzpZfm0o7d1c+XBnrvRuULa0du2uflgT2d6WSlXTL2dnsfnUelOLyunHb1dlN9Ne+70skra0dsv8qq0504vq6Ydvd2Xt6c9d3pZLe3o7en8W9pzp5fV047e3soX0547vayRdvQ2d86Y9tzpZc20o7exuchgz51e1ko7elsvVxnsudPd2mlHb9vlFoM9nell3Vwn9XZGnpBHpzu9rJd29HZxfi/tudPL+mlHbzfm1WnPnV42SDt6+0Pekfbc6WXDtKO3Z/LhtOdOLxulHb29nf9Ne+70snHa0ds8OVPac6eXTdKO3sblooM9d3oZn3b0tn6uOthzp7tNc3zqbfvccrCnM71snpul3s7Mr+UX0p1etkg7erskv5/23Olly7Sjt1/mNWnPnV4mpB29/THvTHvu9LJV2tHbs/lI2nOnl63Tjt7eyZfSnju9TEw7ehuRM6c9d3qZlHb0tnQuNthzNz4npx29bZCrDfbc6W6btKO3HXLCYE9netkut029nZVfz2PSnV62Tzt6uzR/kPbc6WWHtKO3X+W1ac+dXnZMO3r7U96V9tzpZae0o7fn8tG0504vU9KO3t7Nl9OeO73snHb0Nm/Okvbc6WWXtKO3ZXLxwZ47vXwg7ehtw1x9sOdOd7umHb3tmFsN9nSml91zt9TbN/LE/GK608sH047eLstz0547veyRdvT267wu7bnTy4fSjt7+nHenPXd62TPt6O0f+fe0504vH047evtfvpL23Ollr7Sjt5E5a9pzp5epaUdvy+YSgz13evlITk29bZRrDPbc6W7vtKO3nXLrwZ7O9PLR3Cf19s08Kb+U7vTysbRzbl6eP0x77vTy8bSjt5vy+rTnTi/7ph293Z+/zZvSnV4+kXb09s98LO2508sn047e3stX0547veyXdvQ2X86W9txNzf3Tjt6Wy1GDPXd6+VTa0dvGueZgz53uDkg7epuSEwd7OtPLgfnp1NvZeXJ+Od3p5aC0o7cr8ry0504vB6cdvd2cP0177vRySNrR2wP5u7TnTi+fSTuP5b/y8bTnTi+fTTt680f9a321504vn0s7eps/Z0977vRyaNrR2/I5erDnTi+fTzt62yTXGuy5091haUdvO+ekwd77ThQukA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAApgAAAAAAAAA=eF4txRFghAAAAMC2SRiGYRg+huFjGIZhGIZh+BiGYRiGYfgYhoPu5MLgETl24tSZX85d+O3SlWs3bt259+DRH0+evXj15t2HT399+Xbw8xQ6cuzEqTO/nLvw26Ur127cunPvwaM/njx78erNuw+f/vry7eD3KXTk2IlTZ345d+G3S1eu3bh1596DR388efbi1Zt3Hz799eXbwd9T6MixE/8DLbMvQA==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF4TF6c9AADGKQj9
+
+
diff --git a/Tests/Data/Mechanics/Linear/test_ip_data/square_1x1.gml b/Tests/Data/Mechanics/Linear/test_ip_data/square_1x1.gml
new file mode 120000
index 00000000000..bed822be912
--- /dev/null
+++ b/Tests/Data/Mechanics/Linear/test_ip_data/square_1x1.gml
@@ -0,0 +1 @@
+../square_1x1.gml
\ No newline at end of file
diff --git a/Tests/Data/Mechanics/Linear/test_ip_data/square_1x1_quad_1e2_quadratic.vtu b/Tests/Data/Mechanics/Linear/test_ip_data/square_1x1_quad_1e2_quadratic.vtu
new file mode 100644
index 00000000000..cdfc8ee09d1
--- /dev/null
+++ b/Tests/Data/Mechanics/Linear/test_ip_data/square_1x1_quad_1e2_quadratic.vtu
@@ -0,0 +1,23 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ _kAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+B8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACamZmZmZm5PwAAAAAAAAAAAAAAAAAAAACamZmZmZnJPwAAAAAAAAAAAAAAAAAAAAAzMzMzMzPTPwAAAAAAAAAAAAAAAAAAAACamZmZmZnZPwAAAAAAAAAAAAAAAAAAAAAAAAAAAADgPwAAAAAAAAAAAAAAAAAAAAAzMzMzMzPjPwAAAAAAAAAAAAAAAAAAAABmZmZmZmbmPwAAAAAAAAAAAAAAAAAAAACamZmZmZnpPwAAAAAAAAAAAAAAAAAAAADNzMzMzMzsPwAAAAAAAAAAAAAAAAAAAAAAAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqZmZmZmbk/AAAAAAAAAACamZmZmZm5P5qZmZmZmbk/AAAAAAAAAACamZmZmZnJP5qZmZmZmbk/AAAAAAAAAAAzMzMzMzPTP5qZmZmZmbk/AAAAAAAAAACamZmZmZnZP5qZmZmZmbk/AAAAAAAAAAAAAAAAAADgP5qZmZmZmbk/AAAAAAAAAAAzMzMzMzPjP5qZmZmZmbk/AAAAAAAAAABmZmZmZmbmP5qZmZmZmbk/AAAAAAAAAACamZmZmZnpP5qZmZmZmbk/AAAAAAAAAADNzMzMzMzsP5qZmZmZmbk/AAAAAAAAAAAAAAAAAADwP5qZmZmZmbk/AAAAAAAAAAAAAAAAAAAAAJqZmZmZmck/AAAAAAAAAACamZmZmZm5P5qZmZmZmck/AAAAAAAAAACamZmZmZnJP5qZmZmZmck/AAAAAAAAAAAzMzMzMzPTP5qZmZmZmck/AAAAAAAAAACamZmZmZnZP5qZmZmZmck/AAAAAAAAAAAAAAAAAADgP5qZmZmZmck/AAAAAAAAAAAzMzMzMzPjP5qZmZmZmck/AAAAAAAAAABmZmZmZmbmP5qZmZmZmck/AAAAAAAAAACamZmZmZnpP5qZmZmZmck/AAAAAAAAAADNzMzMzMzsP5qZmZmZmck/AAAAAAAAAAAAAAAAAADwP5qZmZmZmck/AAAAAAAAAAAAAAAAAAAAADMzMzMzM9M/AAAAAAAAAACamZmZmZm5PzMzMzMzM9M/AAAAAAAAAACamZmZmZnJPzMzMzMzM9M/AAAAAAAAAAAzMzMzMzPTPzMzMzMzM9M/AAAAAAAAAACamZmZmZnZPzMzMzMzM9M/AAAAAAAAAAAAAAAAAADgPzMzMzMzM9M/AAAAAAAAAAAzMzMzMzPjPzMzMzMzM9M/AAAAAAAAAABmZmZmZmbmPzMzMzMzM9M/AAAAAAAAAACamZmZmZnpPzMzMzMzM9M/AAAAAAAAAADNzMzMzMzsPzMzMzMzM9M/AAAAAAAAAAAAAAAAAADwPzMzMzMzM9M/AAAAAAAAAAAAAAAAAAAAAJqZmZmZmdk/AAAAAAAAAACamZmZmZm5P5qZmZmZmdk/AAAAAAAAAACamZmZmZnJP5qZmZmZmdk/AAAAAAAAAAAzMzMzMzPTP5qZmZmZmdk/AAAAAAAAAACamZmZmZnZP5qZmZmZmdk/AAAAAAAAAAAAAAAAAADgP5qZmZmZmdk/AAAAAAAAAAAzMzMzMzPjP5qZmZmZmdk/AAAAAAAAAABmZmZmZmbmP5qZmZmZmdk/AAAAAAAAAACamZmZmZnpP5qZmZmZmdk/AAAAAAAAAADNzMzMzMzsP5qZmZmZmdk/AAAAAAAAAAAAAAAAAADwP5qZmZmZmdk/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAOA/AAAAAAAAAACamZmZmZm5PwAAAAAAAOA/AAAAAAAAAACamZmZmZnJPwAAAAAAAOA/AAAAAAAAAAAzMzMzMzPTPwAAAAAAAOA/AAAAAAAAAACamZmZmZnZPwAAAAAAAOA/AAAAAAAAAAAAAAAAAADgPwAAAAAAAOA/AAAAAAAAAAAzMzMzMzPjPwAAAAAAAOA/AAAAAAAAAABmZmZmZmbmPwAAAAAAAOA/AAAAAAAAAACamZmZmZnpPwAAAAAAAOA/AAAAAAAAAADNzMzMzMzsPwAAAAAAAOA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAOA/AAAAAAAAAAAAAAAAAAAAADMzMzMzM+M/AAAAAAAAAACamZmZmZm5PzMzMzMzM+M/AAAAAAAAAACamZmZmZnJPzMzMzMzM+M/AAAAAAAAAAAzMzMzMzPTPzMzMzMzM+M/AAAAAAAAAACamZmZmZnZPzMzMzMzM+M/AAAAAAAAAAAAAAAAAADgPzMzMzMzM+M/AAAAAAAAAAAzMzMzMzPjPzMzMzMzM+M/AAAAAAAAAABmZmZmZmbmPzMzMzMzM+M/AAAAAAAAAACamZmZmZnpPzMzMzMzM+M/AAAAAAAAAADNzMzMzMzsPzMzMzMzM+M/AAAAAAAAAAAAAAAAAADwPzMzMzMzM+M/AAAAAAAAAAAAAAAAAAAAAGZmZmZmZuY/AAAAAAAAAACamZmZmZm5P2ZmZmZmZuY/AAAAAAAAAACamZmZmZnJP2ZmZmZmZuY/AAAAAAAAAAAzMzMzMzPTP2ZmZmZmZuY/AAAAAAAAAACamZmZmZnZP2ZmZmZmZuY/AAAAAAAAAAAAAAAAAADgP2ZmZmZmZuY/AAAAAAAAAAAzMzMzMzPjP2ZmZmZmZuY/AAAAAAAAAABmZmZmZmbmP2ZmZmZmZuY/AAAAAAAAAACamZmZmZnpP2ZmZmZmZuY/AAAAAAAAAADNzMzMzMzsP2ZmZmZmZuY/AAAAAAAAAAAAAAAAAADwP2ZmZmZmZuY/AAAAAAAAAAAAAAAAAAAAAJqZmZmZmek/AAAAAAAAAACamZmZmZm5P5qZmZmZmek/AAAAAAAAAACamZmZmZnJP5qZmZmZmek/AAAAAAAAAAAzMzMzMzPTP5qZmZmZmek/AAAAAAAAAACamZmZmZnZP5qZmZmZmek/AAAAAAAAAAAAAAAAAADgP5qZmZmZmek/AAAAAAAAAAAzMzMzMzPjP5qZmZmZmek/AAAAAAAAAABmZmZmZmbmP5qZmZmZmek/AAAAAAAAAACamZmZmZnpP5qZmZmZmek/AAAAAAAAAADNzMzMzMzsP5qZmZmZmek/AAAAAAAAAAAAAAAAAADwP5qZmZmZmek/AAAAAAAAAAAAAAAAAAAAAM3MzMzMzOw/AAAAAAAAAACamZmZmZm5P83MzMzMzOw/AAAAAAAAAACamZmZmZnJP83MzMzMzOw/AAAAAAAAAAAzMzMzMzPTP83MzMzMzOw/AAAAAAAAAACamZmZmZnZP83MzMzMzOw/AAAAAAAAAAAAAAAAAADgP83MzMzMzOw/AAAAAAAAAAAzMzMzMzPjP83MzMzMzOw/AAAAAAAAAABmZmZmZmbmP83MzMzMzOw/AAAAAAAAAACamZmZmZnpP83MzMzMzOw/AAAAAAAAAADNzMzMzMzsP83MzMzMzOw/AAAAAAAAAAAAAAAAAADwP83MzMzMzOw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAAAACamZmZmZm5PwAAAAAAAPA/AAAAAAAAAACamZmZmZnJPwAAAAAAAPA/AAAAAAAAAAAzMzMzMzPTPwAAAAAAAPA/AAAAAAAAAACamZmZmZnZPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADgPwAAAAAAAPA/AAAAAAAAAAAzMzMzMzPjPwAAAAAAAPA/AAAAAAAAAABmZmZmZmbmPwAAAAAAAPA/AAAAAAAAAACamZmZmZnpPwAAAAAAAPA/AAAAAAAAAADNzMzMzMzsPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAAAAAJqZmZmZmak/AAAAAAAAAAAAAAAAAAAAADQzMzMzM8M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAANA/AAAAAAAAAAAAAAAAAAAAAGZmZmZmZtY/AAAAAAAAAAAAAAAAAAAAAM3MzMzMzNw/AAAAAAAAAAAAAAAAAAAAAJqZmZmZmeE/AAAAAAAAAAAAAAAAAAAAAMzMzMzMzOQ/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAOg/AAAAAAAAAAAAAAAAAAAAADQzMzMzM+s/AAAAAAAAAAAAAAAAAAAAAGZmZmZmZu4/AAAAAAAAAACamZmZmZmpPwAAAAAAAAAAAAAAAAAAAACamZmZmZmpP5qZmZmZmbk/AAAAAAAAAACamZmZmZmpP5qZmZmZmck/AAAAAAAAAACamZmZmZmpPzMzMzMzM9M/AAAAAAAAAACamZmZmZmpP5qZmZmZmdk/AAAAAAAAAACamZmZmZmpPwAAAAAAAOA/AAAAAAAAAACamZmZmZmpPzMzMzMzM+M/AAAAAAAAAACamZmZmZmpP2ZmZmZmZuY/AAAAAAAAAACamZmZmZmpP5qZmZmZmek/AAAAAAAAAACamZmZmZmpP83MzMzMzOw/AAAAAAAAAACamZmZmZmpPwAAAAAAAPA/AAAAAAAAAACamZmZmZm5P5qZmZmZmak/AAAAAAAAAACamZmZmZm5PzQzMzMzM8M/AAAAAAAAAACamZmZmZm5PwAAAAAAANA/AAAAAAAAAACamZmZmZm5P2ZmZmZmZtY/AAAAAAAAAACamZmZmZm5P83MzMzMzNw/AAAAAAAAAACamZmZmZm5P5qZmZmZmeE/AAAAAAAAAACamZmZmZm5P8zMzMzMzOQ/AAAAAAAAAACamZmZmZm5PwAAAAAAAOg/AAAAAAAAAACamZmZmZm5PzQzMzMzM+s/AAAAAAAAAACamZmZmZm5P2ZmZmZmZu4/AAAAAAAAAAA0MzMzMzPDPwAAAAAAAAAAAAAAAAAAAAA0MzMzMzPDP5qZmZmZmbk/AAAAAAAAAAA0MzMzMzPDP5qZmZmZmck/AAAAAAAAAAA0MzMzMzPDPzMzMzMzM9M/AAAAAAAAAAA0MzMzMzPDP5qZmZmZmdk/AAAAAAAAAAA0MzMzMzPDPwAAAAAAAOA/AAAAAAAAAAA0MzMzMzPDPzMzMzMzM+M/AAAAAAAAAAA0MzMzMzPDP2ZmZmZmZuY/AAAAAAAAAAA0MzMzMzPDP5qZmZmZmek/AAAAAAAAAAA0MzMzMzPDP83MzMzMzOw/AAAAAAAAAAA0MzMzMzPDPwAAAAAAAPA/AAAAAAAAAACamZmZmZnJP5qZmZmZmak/AAAAAAAAAACamZmZmZnJPzQzMzMzM8M/AAAAAAAAAACamZmZmZnJPwAAAAAAANA/AAAAAAAAAACamZmZmZnJP2ZmZmZmZtY/AAAAAAAAAACamZmZmZnJP83MzMzMzNw/AAAAAAAAAACamZmZmZnJP5qZmZmZmeE/AAAAAAAAAACamZmZmZnJP8zMzMzMzOQ/AAAAAAAAAACamZmZmZnJPwAAAAAAAOg/AAAAAAAAAACamZmZmZnJPzQzMzMzM+s/AAAAAAAAAACamZmZmZnJP2ZmZmZmZu4/AAAAAAAAAAAAAAAAAADQPwAAAAAAAAAAAAAAAAAAAAAAAAAAAADQP5qZmZmZmbk/AAAAAAAAAAAAAAAAAADQP5qZmZmZmck/AAAAAAAAAAAAAAAAAADQPzMzMzMzM9M/AAAAAAAAAAAAAAAAAADQP5qZmZmZmdk/AAAAAAAAAAAAAAAAAADQPwAAAAAAAOA/AAAAAAAAAAAAAAAAAADQPzMzMzMzM+M/AAAAAAAAAAAAAAAAAADQP2ZmZmZmZuY/AAAAAAAAAAAAAAAAAADQP5qZmZmZmek/AAAAAAAAAAAAAAAAAADQP83MzMzMzOw/AAAAAAAAAAAAAAAAAADQPwAAAAAAAPA/AAAAAAAAAAAzMzMzMzPTP5qZmZmZmak/AAAAAAAAAAAzMzMzMzPTPzQzMzMzM8M/AAAAAAAAAAAzMzMzMzPTPwAAAAAAANA/AAAAAAAAAAAzMzMzMzPTP2ZmZmZmZtY/AAAAAAAAAAAzMzMzMzPTP83MzMzMzNw/AAAAAAAAAAAzMzMzMzPTP5qZmZmZmeE/AAAAAAAAAAAzMzMzMzPTP8zMzMzMzOQ/AAAAAAAAAAAzMzMzMzPTPwAAAAAAAOg/AAAAAAAAAAAzMzMzMzPTPzQzMzMzM+s/AAAAAAAAAAAzMzMzMzPTP2ZmZmZmZu4/AAAAAAAAAABmZmZmZmbWPwAAAAAAAAAAAAAAAAAAAABmZmZmZmbWP5qZmZmZmbk/AAAAAAAAAABmZmZmZmbWP5qZmZmZmck/AAAAAAAAAABmZmZmZmbWPzMzMzMzM9M/AAAAAAAAAABmZmZmZmbWP5qZmZmZmdk/AAAAAAAAAABmZmZmZmbWPwAAAAAAAOA/AAAAAAAAAABmZmZmZmbWPzMzMzMzM+M/AAAAAAAAAABmZmZmZmbWP2ZmZmZmZuY/AAAAAAAAAABmZmZmZmbWP5qZmZmZmek/AAAAAAAAAABmZmZmZmbWP83MzMzMzOw/AAAAAAAAAABmZmZmZmbWPwAAAAAAAPA/AAAAAAAAAACamZmZmZnZP5qZmZmZmak/AAAAAAAAAACamZmZmZnZPzQzMzMzM8M/AAAAAAAAAACamZmZmZnZPwAAAAAAANA/AAAAAAAAAACamZmZmZnZP2ZmZmZmZtY/AAAAAAAAAACamZmZmZnZP83MzMzMzNw/AAAAAAAAAACamZmZmZnZP5qZmZmZmeE/AAAAAAAAAACamZmZmZnZP8zMzMzMzOQ/AAAAAAAAAACamZmZmZnZPwAAAAAAAOg/AAAAAAAAAACamZmZmZnZPzQzMzMzM+s/AAAAAAAAAACamZmZmZnZP2ZmZmZmZu4/AAAAAAAAAADNzMzMzMzcPwAAAAAAAAAAAAAAAAAAAADNzMzMzMzcP5qZmZmZmbk/AAAAAAAAAADNzMzMzMzcP5qZmZmZmck/AAAAAAAAAADNzMzMzMzcPzMzMzMzM9M/AAAAAAAAAADNzMzMzMzcP5qZmZmZmdk/AAAAAAAAAADNzMzMzMzcPwAAAAAAAOA/AAAAAAAAAADNzMzMzMzcPzMzMzMzM+M/AAAAAAAAAADNzMzMzMzcP2ZmZmZmZuY/AAAAAAAAAADNzMzMzMzcP5qZmZmZmek/AAAAAAAAAADNzMzMzMzcP83MzMzMzOw/AAAAAAAAAADNzMzMzMzcPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADgP5qZmZmZmak/AAAAAAAAAAAAAAAAAADgPzQzMzMzM8M/AAAAAAAAAAAAAAAAAADgPwAAAAAAANA/AAAAAAAAAAAAAAAAAADgP2ZmZmZmZtY/AAAAAAAAAAAAAAAAAADgP83MzMzMzNw/AAAAAAAAAAAAAAAAAADgP5qZmZmZmeE/AAAAAAAAAAAAAAAAAADgP8zMzMzMzOQ/AAAAAAAAAAAAAAAAAADgPwAAAAAAAOg/AAAAAAAAAAAAAAAAAADgPzQzMzMzM+s/AAAAAAAAAAAAAAAAAADgP2ZmZmZmZu4/AAAAAAAAAACamZmZmZnhPwAAAAAAAAAAAAAAAAAAAACamZmZmZnhP5qZmZmZmbk/AAAAAAAAAACamZmZmZnhP5qZmZmZmck/AAAAAAAAAACamZmZmZnhPzMzMzMzM9M/AAAAAAAAAACamZmZmZnhP5qZmZmZmdk/AAAAAAAAAACamZmZmZnhPwAAAAAAAOA/AAAAAAAAAACamZmZmZnhPzMzMzMzM+M/AAAAAAAAAACamZmZmZnhP2ZmZmZmZuY/AAAAAAAAAACamZmZmZnhP5qZmZmZmek/AAAAAAAAAACamZmZmZnhP83MzMzMzOw/AAAAAAAAAACamZmZmZnhPwAAAAAAAPA/AAAAAAAAAAAzMzMzMzPjP5qZmZmZmak/AAAAAAAAAAAzMzMzMzPjPzQzMzMzM8M/AAAAAAAAAAAzMzMzMzPjPwAAAAAAANA/AAAAAAAAAAAzMzMzMzPjP2ZmZmZmZtY/AAAAAAAAAAAzMzMzMzPjP83MzMzMzNw/AAAAAAAAAAAzMzMzMzPjP5qZmZmZmeE/AAAAAAAAAAAzMzMzMzPjP8zMzMzMzOQ/AAAAAAAAAAAzMzMzMzPjPwAAAAAAAOg/AAAAAAAAAAAzMzMzMzPjPzQzMzMzM+s/AAAAAAAAAAAzMzMzMzPjP2ZmZmZmZu4/AAAAAAAAAADMzMzMzMzkPwAAAAAAAAAAAAAAAAAAAADMzMzMzMzkP5qZmZmZmbk/AAAAAAAAAADMzMzMzMzkP5qZmZmZmck/AAAAAAAAAADMzMzMzMzkPzMzMzMzM9M/AAAAAAAAAADMzMzMzMzkP5qZmZmZmdk/AAAAAAAAAADMzMzMzMzkPwAAAAAAAOA/AAAAAAAAAADMzMzMzMzkPzMzMzMzM+M/AAAAAAAAAADMzMzMzMzkP2ZmZmZmZuY/AAAAAAAAAADMzMzMzMzkP5qZmZmZmek/AAAAAAAAAADMzMzMzMzkP83MzMzMzOw/AAAAAAAAAADMzMzMzMzkPwAAAAAAAPA/AAAAAAAAAABmZmZmZmbmP5qZmZmZmak/AAAAAAAAAABmZmZmZmbmPzQzMzMzM8M/AAAAAAAAAABmZmZmZmbmPwAAAAAAANA/AAAAAAAAAABmZmZmZmbmP2ZmZmZmZtY/AAAAAAAAAABmZmZmZmbmP83MzMzMzNw/AAAAAAAAAABmZmZmZmbmP5qZmZmZmeE/AAAAAAAAAABmZmZmZmbmP8zMzMzMzOQ/AAAAAAAAAABmZmZmZmbmPwAAAAAAAOg/AAAAAAAAAABmZmZmZmbmPzQzMzMzM+s/AAAAAAAAAABmZmZmZmbmP2ZmZmZmZu4/AAAAAAAAAAAAAAAAAADoPwAAAAAAAAAAAAAAAAAAAAAAAAAAAADoP5qZmZmZmbk/AAAAAAAAAAAAAAAAAADoP5qZmZmZmck/AAAAAAAAAAAAAAAAAADoPzMzMzMzM9M/AAAAAAAAAAAAAAAAAADoP5qZmZmZmdk/AAAAAAAAAAAAAAAAAADoPwAAAAAAAOA/AAAAAAAAAAAAAAAAAADoPzMzMzMzM+M/AAAAAAAAAAAAAAAAAADoP2ZmZmZmZuY/AAAAAAAAAAAAAAAAAADoP5qZmZmZmek/AAAAAAAAAAAAAAAAAADoP83MzMzMzOw/AAAAAAAAAAAAAAAAAADoPwAAAAAAAPA/AAAAAAAAAACamZmZmZnpP5qZmZmZmak/AAAAAAAAAACamZmZmZnpPzQzMzMzM8M/AAAAAAAAAACamZmZmZnpPwAAAAAAANA/AAAAAAAAAACamZmZmZnpP2ZmZmZmZtY/AAAAAAAAAACamZmZmZnpP83MzMzMzNw/AAAAAAAAAACamZmZmZnpP5qZmZmZmeE/AAAAAAAAAACamZmZmZnpP8zMzMzMzOQ/AAAAAAAAAACamZmZmZnpPwAAAAAAAOg/AAAAAAAAAACamZmZmZnpPzQzMzMzM+s/AAAAAAAAAACamZmZmZnpP2ZmZmZmZu4/AAAAAAAAAAA0MzMzMzPrPwAAAAAAAAAAAAAAAAAAAAA0MzMzMzPrP5qZmZmZmbk/AAAAAAAAAAA0MzMzMzPrP5qZmZmZmck/AAAAAAAAAAA0MzMzMzPrPzMzMzMzM9M/AAAAAAAAAAA0MzMzMzPrP5qZmZmZmdk/AAAAAAAAAAA0MzMzMzPrPwAAAAAAAOA/AAAAAAAAAAA0MzMzMzPrPzMzMzMzM+M/AAAAAAAAAAA0MzMzMzPrP2ZmZmZmZuY/AAAAAAAAAAA0MzMzMzPrP5qZmZmZmek/AAAAAAAAAAA0MzMzMzPrP83MzMzMzOw/AAAAAAAAAAA0MzMzMzPrPwAAAAAAAPA/AAAAAAAAAADNzMzMzMzsP5qZmZmZmak/AAAAAAAAAADNzMzMzMzsPzQzMzMzM8M/AAAAAAAAAADNzMzMzMzsPwAAAAAAANA/AAAAAAAAAADNzMzMzMzsP2ZmZmZmZtY/AAAAAAAAAADNzMzMzMzsP83MzMzMzNw/AAAAAAAAAADNzMzMzMzsP5qZmZmZmeE/AAAAAAAAAADNzMzMzMzsP8zMzMzMzOQ/AAAAAAAAAADNzMzMzMzsPwAAAAAAAOg/AAAAAAAAAADNzMzMzMzsPzQzMzMzM+s/AAAAAAAAAADNzMzMzMzsP2ZmZmZmZu4/AAAAAAAAAABmZmZmZmbuPwAAAAAAAAAAAAAAAAAAAABmZmZmZmbuP5qZmZmZmbk/AAAAAAAAAABmZmZmZmbuP5qZmZmZmck/AAAAAAAAAABmZmZmZmbuPzMzMzMzM9M/AAAAAAAAAABmZmZmZmbuP5qZmZmZmdk/AAAAAAAAAABmZmZmZmbuPwAAAAAAAOA/AAAAAAAAAABmZmZmZmbuPzMzMzMzM+M/AAAAAAAAAABmZmZmZmbuP2ZmZmZmZuY/AAAAAAAAAABmZmZmZmbuP5qZmZmZmek/AAAAAAAAAABmZmZmZmbuP83MzMzMzOw/AAAAAAAAAABmZmZmZmbuPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwP5qZmZmZmak/AAAAAAAAAAAAAAAAAADwPzQzMzMzM8M/AAAAAAAAAAAAAAAAAADwPwAAAAAAANA/AAAAAAAAAAAAAAAAAADwP2ZmZmZmZtY/AAAAAAAAAAAAAAAAAADwP83MzMzMzNw/AAAAAAAAAAAAAAAAAADwP5qZmZmZmeE/AAAAAAAAAAAAAAAAAADwP8zMzMzMzOQ/AAAAAAAAAAAAAAAAAADwPwAAAAAAAOg/AAAAAAAAAAAAAAAAAADwPzQzMzMzM+s/AAAAAAAAAAAAAAAAAADwP2ZmZmZmZu4/AAAAAAAAAAA=ABkAAAAAAAAAAAAAAAAAAAEAAAAAAAAADAAAAAAAAAALAAAAAAAAAIMAAAAAAAAAjgAAAAAAAACEAAAAAAAAAHkAAAAAAAAAAQAAAAAAAAACAAAAAAAAAA0AAAAAAAAADAAAAAAAAACYAAAAAAAAAKMAAAAAAAAAmQAAAAAAAACOAAAAAAAAAAIAAAAAAAAAAwAAAAAAAAAOAAAAAAAAAA0AAAAAAAAArQAAAAAAAAC4AAAAAAAAAK4AAAAAAAAAowAAAAAAAAADAAAAAAAAAAQAAAAAAAAADwAAAAAAAAAOAAAAAAAAAMIAAAAAAAAAzQAAAAAAAADDAAAAAAAAALgAAAAAAAAABAAAAAAAAAAFAAAAAAAAABAAAAAAAAAADwAAAAAAAADXAAAAAAAAAOIAAAAAAAAA2AAAAAAAAADNAAAAAAAAAAUAAAAAAAAABgAAAAAAAAARAAAAAAAAABAAAAAAAAAA7AAAAAAAAAD3AAAAAAAAAO0AAAAAAAAA4gAAAAAAAAAGAAAAAAAAAAcAAAAAAAAAEgAAAAAAAAARAAAAAAAAAAEBAAAAAAAADAEAAAAAAAACAQAAAAAAAPcAAAAAAAAABwAAAAAAAAAIAAAAAAAAABMAAAAAAAAAEgAAAAAAAAAWAQAAAAAAACEBAAAAAAAAFwEAAAAAAAAMAQAAAAAAAAgAAAAAAAAACQAAAAAAAAAUAAAAAAAAABMAAAAAAAAAKwEAAAAAAAA2AQAAAAAAACwBAAAAAAAAIQEAAAAAAAAJAAAAAAAAAAoAAAAAAAAAFQAAAAAAAAAUAAAAAAAAAEABAAAAAAAASwEAAAAAAABBAQAAAAAAADYBAAAAAAAACwAAAAAAAAAMAAAAAAAAABcAAAAAAAAAFgAAAAAAAACEAAAAAAAAAI8AAAAAAAAAhQAAAAAAAAB6AAAAAAAAAAwAAAAAAAAADQAAAAAAAAAYAAAAAAAAABcAAAAAAAAAmQAAAAAAAACkAAAAAAAAAJoAAAAAAAAAjwAAAAAAAAANAAAAAAAAAA4AAAAAAAAAGQAAAAAAAAAYAAAAAAAAAK4AAAAAAAAAuQAAAAAAAACvAAAAAAAAAKQAAAAAAAAADgAAAAAAAAAPAAAAAAAAABoAAAAAAAAAGQAAAAAAAADDAAAAAAAAAM4AAAAAAAAAxAAAAAAAAAC5AAAAAAAAAA8AAAAAAAAAEAAAAAAAAAAbAAAAAAAAABoAAAAAAAAA2AAAAAAAAADjAAAAAAAAANkAAAAAAAAAzgAAAAAAAAAQAAAAAAAAABEAAAAAAAAAHAAAAAAAAAAbAAAAAAAAAO0AAAAAAAAA+AAAAAAAAADuAAAAAAAAAOMAAAAAAAAAEQAAAAAAAAASAAAAAAAAAB0AAAAAAAAAHAAAAAAAAAACAQAAAAAAAA0BAAAAAAAAAwEAAAAAAAD4AAAAAAAAABIAAAAAAAAAEwAAAAAAAAAeAAAAAAAAAB0AAAAAAAAAFwEAAAAAAAAiAQAAAAAAABgBAAAAAAAADQEAAAAAAAATAAAAAAAAABQAAAAAAAAAHwAAAAAAAAAeAAAAAAAAACwBAAAAAAAANwEAAAAAAAAtAQAAAAAAACIBAAAAAAAAFAAAAAAAAAAVAAAAAAAAACAAAAAAAAAAHwAAAAAAAABBAQAAAAAAAEwBAAAAAAAAQgEAAAAAAAA3AQAAAAAAABYAAAAAAAAAFwAAAAAAAAAiAAAAAAAAACEAAAAAAAAAhQAAAAAAAACQAAAAAAAAAIYAAAAAAAAAewAAAAAAAAAXAAAAAAAAABgAAAAAAAAAIwAAAAAAAAAiAAAAAAAAAJoAAAAAAAAApQAAAAAAAACbAAAAAAAAAJAAAAAAAAAAGAAAAAAAAAAZAAAAAAAAACQAAAAAAAAAIwAAAAAAAACvAAAAAAAAALoAAAAAAAAAsAAAAAAAAAClAAAAAAAAABkAAAAAAAAAGgAAAAAAAAAlAAAAAAAAACQAAAAAAAAAxAAAAAAAAADPAAAAAAAAAMUAAAAAAAAAugAAAAAAAAAaAAAAAAAAABsAAAAAAAAAJgAAAAAAAAAlAAAAAAAAANkAAAAAAAAA5AAAAAAAAADaAAAAAAAAAM8AAAAAAAAAGwAAAAAAAAAcAAAAAAAAACcAAAAAAAAAJgAAAAAAAADuAAAAAAAAAPkAAAAAAAAA7wAAAAAAAADkAAAAAAAAABwAAAAAAAAAHQAAAAAAAAAoAAAAAAAAACcAAAAAAAAAAwEAAAAAAAAOAQAAAAAAAAQBAAAAAAAA+QAAAAAAAAAdAAAAAAAAAB4AAAAAAAAAKQAAAAAAAAAoAAAAAAAAABgBAAAAAAAAIwEAAAAAAAAZAQAAAAAAAA4BAAAAAAAAHgAAAAAAAAAfAAAAAAAAACoAAAAAAAAAKQAAAAAAAAAtAQAAAAAAADgBAAAAAAAALgEAAAAAAAAjAQAAAAAAAB8AAAAAAAAAIAAAAAAAAAArAAAAAAAAACoAAAAAAAAAQgEAAAAAAABNAQAAAAAAAEMBAAAAAAAAOAEAAAAAAAAhAAAAAAAAACIAAAAAAAAALQAAAAAAAAAsAAAAAAAAAIYAAAAAAAAAkQAAAAAAAACHAAAAAAAAAHwAAAAAAAAAIgAAAAAAAAAjAAAAAAAAAC4AAAAAAAAALQAAAAAAAACbAAAAAAAAAKYAAAAAAAAAnAAAAAAAAACRAAAAAAAAACMAAAAAAAAAJAAAAAAAAAAvAAAAAAAAAC4AAAAAAAAAsAAAAAAAAAC7AAAAAAAAALEAAAAAAAAApgAAAAAAAAAkAAAAAAAAACUAAAAAAAAAMAAAAAAAAAAvAAAAAAAAAMUAAAAAAAAA0AAAAAAAAADGAAAAAAAAALsAAAAAAAAAJQAAAAAAAAAmAAAAAAAAADEAAAAAAAAAMAAAAAAAAADaAAAAAAAAAOUAAAAAAAAA2wAAAAAAAADQAAAAAAAAACYAAAAAAAAAJwAAAAAAAAAyAAAAAAAAADEAAAAAAAAA7wAAAAAAAAD6AAAAAAAAAPAAAAAAAAAA5QAAAAAAAAAnAAAAAAAAACgAAAAAAAAAMwAAAAAAAAAyAAAAAAAAAAQBAAAAAAAADwEAAAAAAAAFAQAAAAAAAPoAAAAAAAAAKAAAAAAAAAApAAAAAAAAADQAAAAAAAAAMwAAAAAAAAAZAQAAAAAAACQBAAAAAAAAGgEAAAAAAAAPAQAAAAAAACkAAAAAAAAAKgAAAAAAAAA1AAAAAAAAADQAAAAAAAAALgEAAAAAAAA5AQAAAAAAAC8BAAAAAAAAJAEAAAAAAAAqAAAAAAAAACsAAAAAAAAANgAAAAAAAAA1AAAAAAAAAEMBAAAAAAAATgEAAAAAAABEAQAAAAAAADkBAAAAAAAALAAAAAAAAAAtAAAAAAAAADgAAAAAAAAANwAAAAAAAACHAAAAAAAAAJIAAAAAAAAAiAAAAAAAAAB9AAAAAAAAAC0AAAAAAAAALgAAAAAAAAA5AAAAAAAAADgAAAAAAAAAnAAAAAAAAACnAAAAAAAAAJ0AAAAAAAAAkgAAAAAAAAAuAAAAAAAAAC8AAAAAAAAAOgAAAAAAAAA5AAAAAAAAALEAAAAAAAAAvAAAAAAAAACyAAAAAAAAAKcAAAAAAAAALwAAAAAAAAAwAAAAAAAAADsAAAAAAAAAOgAAAAAAAADGAAAAAAAAANEAAAAAAAAAxwAAAAAAAAC8AAAAAAAAADAAAAAAAAAAMQAAAAAAAAA8AAAAAAAAADsAAAAAAAAA2wAAAAAAAADmAAAAAAAAANwAAAAAAAAA0QAAAAAAAAAxAAAAAAAAADIAAAAAAAAAPQAAAAAAAAA8AAAAAAAAAPAAAAAAAAAA+wAAAAAAAADxAAAAAAAAAOYAAAAAAAAAMgAAAAAAAAAzAAAAAAAAAD4AAAAAAAAAPQAAAAAAAAAFAQAAAAAAABABAAAAAAAABgEAAAAAAAD7AAAAAAAAADMAAAAAAAAANAAAAAAAAAA/AAAAAAAAAD4AAAAAAAAAGgEAAAAAAAAlAQAAAAAAABsBAAAAAAAAEAEAAAAAAAA0AAAAAAAAADUAAAAAAAAAQAAAAAAAAAA/AAAAAAAAAC8BAAAAAAAAOgEAAAAAAAAwAQAAAAAAACUBAAAAAAAANQAAAAAAAAA2AAAAAAAAAEEAAAAAAAAAQAAAAAAAAABEAQAAAAAAAE8BAAAAAAAARQEAAAAAAAA6AQAAAAAAADcAAAAAAAAAOAAAAAAAAABDAAAAAAAAAEIAAAAAAAAAiAAAAAAAAACTAAAAAAAAAIkAAAAAAAAAfgAAAAAAAAA4AAAAAAAAADkAAAAAAAAARAAAAAAAAABDAAAAAAAAAJ0AAAAAAAAAqAAAAAAAAACeAAAAAAAAAJMAAAAAAAAAOQAAAAAAAAA6AAAAAAAAAEUAAAAAAAAARAAAAAAAAACyAAAAAAAAAL0AAAAAAAAAswAAAAAAAACoAAAAAAAAADoAAAAAAAAAOwAAAAAAAABGAAAAAAAAAEUAAAAAAAAAxwAAAAAAAADSAAAAAAAAAMgAAAAAAAAAvQAAAAAAAAA7AAAAAAAAADwAAAAAAAAARwAAAAAAAABGAAAAAAAAANwAAAAAAAAA5wAAAAAAAADdAAAAAAAAANIAAAAAAAAAPAAAAAAAAAA9AAAAAAAAAEgAAAAAAAAARwAAAAAAAADxAAAAAAAAAPwAAAAAAAAA8gAAAAAAAADnAAAAAAAAAD0AAAAAAAAAPgAAAAAAAABJAAAAAAAAAEgAAAAAAAAABgEAAAAAAAARAQAAAAAAAAcBAAAAAAAA/AAAAAAAAAA+AAAAAAAAAD8AAAAAAAAASgAAAAAAAABJAAAAAAAAABsBAAAAAAAAJgEAAAAAAAAcAQAAAAAAABEBAAAAAAAAPwAAAAAAAABAAAAAAAAAAEsAAAAAAAAASgAAAAAAAAAwAQAAAAAAADsBAAAAAAAAMQEAAAAAAAAmAQAAAAAAAEAAAAAAAAAAQQAAAAAAAABMAAAAAAAAAEsAAAAAAAAARQEAAAAAAABQAQAAAAAAAEYBAAAAAAAAOwEAAAAAAABCAAAAAAAAAEMAAAAAAAAATgAAAAAAAABNAAAAAAAAAIkAAAAAAAAAlAAAAAAAAACKAAAAAAAAAH8AAAAAAAAAQwAAAAAAAABEAAAAAAAAAE8AAAAAAAAATgAAAAAAAACeAAAAAAAAAKkAAAAAAAAAnwAAAAAAAACUAAAAAAAAAEQAAAAAAAAARQAAAAAAAABQAAAAAAAAAE8AAAAAAAAAswAAAAAAAAC+AAAAAAAAALQAAAAAAAAAqQAAAAAAAABFAAAAAAAAAEYAAAAAAAAAUQAAAAAAAABQAAAAAAAAAMgAAAAAAAAA0wAAAAAAAADJAAAAAAAAAL4AAAAAAAAARgAAAAAAAABHAAAAAAAAAFIAAAAAAAAAUQAAAAAAAADdAAAAAAAAAOgAAAAAAAAA3gAAAAAAAADTAAAAAAAAAEcAAAAAAAAASAAAAAAAAABTAAAAAAAAAFIAAAAAAAAA8gAAAAAAAAD9AAAAAAAAAPMAAAAAAAAA6AAAAAAAAABIAAAAAAAAAEkAAAAAAAAAVAAAAAAAAABTAAAAAAAAAAcBAAAAAAAAEgEAAAAAAAAIAQAAAAAAAP0AAAAAAAAASQAAAAAAAABKAAAAAAAAAFUAAAAAAAAAVAAAAAAAAAAcAQAAAAAAACcBAAAAAAAAHQEAAAAAAAASAQAAAAAAAEoAAAAAAAAASwAAAAAAAABWAAAAAAAAAFUAAAAAAAAAMQEAAAAAAAA8AQAAAAAAADIBAAAAAAAAJwEAAAAAAABLAAAAAAAAAEwAAAAAAAAAVwAAAAAAAABWAAAAAAAAAEYBAAAAAAAAUQEAAAAAAABHAQAAAAAAADwBAAAAAAAATQAAAAAAAABOAAAAAAAAAFkAAAAAAAAAWAAAAAAAAACKAAAAAAAAAJUAAAAAAAAAiwAAAAAAAACAAAAAAAAAAE4AAAAAAAAATwAAAAAAAABaAAAAAAAAAFkAAAAAAAAAnwAAAAAAAACqAAAAAAAAAKAAAAAAAAAAlQAAAAAAAABPAAAAAAAAAFAAAAAAAAAAWwAAAAAAAABaAAAAAAAAALQAAAAAAAAAvwAAAAAAAAC1AAAAAAAAAKoAAAAAAAAAUAAAAAAAAABRAAAAAAAAAFwAAAAAAAAAWwAAAAAAAADJAAAAAAAAANQAAAAAAAAAygAAAAAAAAC/AAAAAAAAAFEAAAAAAAAAUgAAAAAAAABdAAAAAAAAAFwAAAAAAAAA3gAAAAAAAADpAAAAAAAAAN8AAAAAAAAA1AAAAAAAAABSAAAAAAAAAFMAAAAAAAAAXgAAAAAAAABdAAAAAAAAAPMAAAAAAAAA/gAAAAAAAAD0AAAAAAAAAOkAAAAAAAAAUwAAAAAAAABUAAAAAAAAAF8AAAAAAAAAXgAAAAAAAAAIAQAAAAAAABMBAAAAAAAACQEAAAAAAAD+AAAAAAAAAFQAAAAAAAAAVQAAAAAAAABgAAAAAAAAAF8AAAAAAAAAHQEAAAAAAAAoAQAAAAAAAB4BAAAAAAAAEwEAAAAAAABVAAAAAAAAAFYAAAAAAAAAYQAAAAAAAABgAAAAAAAAADIBAAAAAAAAPQEAAAAAAAAzAQAAAAAAACgBAAAAAAAAVgAAAAAAAABXAAAAAAAAAGIAAAAAAAAAYQAAAAAAAABHAQAAAAAAAFIBAAAAAAAASAEAAAAAAAA9AQAAAAAAAFgAAAAAAAAAWQAAAAAAAABkAAAAAAAAAGMAAAAAAAAAiwAAAAAAAACWAAAAAAAAAIwAAAAAAAAAgQAAAAAAAABZAAAAAAAAAFoAAAAAAAAAZQAAAAAAAABkAAAAAAAAAKAAAAAAAAAAqwAAAAAAAAChAAAAAAAAAJYAAAAAAAAAWgAAAAAAAABbAAAAAAAAAGYAAAAAAAAAZQAAAAAAAAC1AAAAAAAAAMAAAAAAAAAAtgAAAAAAAACrAAAAAAAAAFsAAAAAAAAAXAAAAAAAAABnAAAAAAAAAGYAAAAAAAAAygAAAAAAAADVAAAAAAAAAMsAAAAAAAAAwAAAAAAAAABcAAAAAAAAAF0AAAAAAAAAaAAAAAAAAABnAAAAAAAAAN8AAAAAAAAA6gAAAAAAAADgAAAAAAAAANUAAAAAAAAAXQAAAAAAAABeAAAAAAAAAGkAAAAAAAAAaAAAAAAAAAD0AAAAAAAAAP8AAAAAAAAA9QAAAAAAAADqAAAAAAAAAF4AAAAAAAAAXwAAAAAAAABqAAAAAAAAAGkAAAAAAAAACQEAAAAAAAAUAQAAAAAAAAoBAAAAAAAA/wAAAAAAAABfAAAAAAAAAGAAAAAAAAAAawAAAAAAAABqAAAAAAAAAB4BAAAAAAAAKQEAAAAAAAAfAQAAAAAAABQBAAAAAAAAYAAAAAAAAABhAAAAAAAAAGwAAAAAAAAAawAAAAAAAAAzAQAAAAAAAD4BAAAAAAAANAEAAAAAAAApAQAAAAAAAGEAAAAAAAAAYgAAAAAAAABtAAAAAAAAAGwAAAAAAAAASAEAAAAAAABTAQAAAAAAAEkBAAAAAAAAPgEAAAAAAABjAAAAAAAAAGQAAAAAAAAAbwAAAAAAAABuAAAAAAAAAIwAAAAAAAAAlwAAAAAAAACNAAAAAAAAAIIAAAAAAAAAZAAAAAAAAABlAAAAAAAAAHAAAAAAAAAAbwAAAAAAAAChAAAAAAAAAKwAAAAAAAAAogAAAAAAAACXAAAAAAAAAGUAAAAAAAAAZgAAAAAAAABxAAAAAAAAAHAAAAAAAAAAtgAAAAAAAADBAAAAAAAAALcAAAAAAAAArAAAAAAAAABmAAAAAAAAAGcAAAAAAAAAcgAAAAAAAABxAAAAAAAAAMsAAAAAAAAA1gAAAAAAAADMAAAAAAAAAMEAAAAAAAAAZwAAAAAAAABoAAAAAAAAAHMAAAAAAAAAcgAAAAAAAADgAAAAAAAAAOsAAAAAAAAA4QAAAAAAAADWAAAAAAAAAGgAAAAAAAAAaQAAAAAAAAB0AAAAAAAAAHMAAAAAAAAA9QAAAAAAAAAAAQAAAAAAAPYAAAAAAAAA6wAAAAAAAABpAAAAAAAAAGoAAAAAAAAAdQAAAAAAAAB0AAAAAAAAAAoBAAAAAAAAFQEAAAAAAAALAQAAAAAAAAABAAAAAAAAagAAAAAAAABrAAAAAAAAAHYAAAAAAAAAdQAAAAAAAAAfAQAAAAAAACoBAAAAAAAAIAEAAAAAAAAVAQAAAAAAAGsAAAAAAAAAbAAAAAAAAAB3AAAAAAAAAHYAAAAAAAAANAEAAAAAAAA/AQAAAAAAADUBAAAAAAAAKgEAAAAAAABsAAAAAAAAAG0AAAAAAAAAeAAAAAAAAAB3AAAAAAAAAEkBAAAAAAAAVAEAAAAAAABKAQAAAAAAAD8BAAAAAAAAIAMAAAAAAAAIAAAAAAAAABAAAAAAAAAAGAAAAAAAAAAgAAAAAAAAACgAAAAAAAAAMAAAAAAAAAA4AAAAAAAAAEAAAAAAAAAASAAAAAAAAABQAAAAAAAAAFgAAAAAAAAAYAAAAAAAAABoAAAAAAAAAHAAAAAAAAAAeAAAAAAAAACAAAAAAAAAAIgAAAAAAAAAkAAAAAAAAACYAAAAAAAAAKAAAAAAAAAAqAAAAAAAAACwAAAAAAAAALgAAAAAAAAAwAAAAAAAAADIAAAAAAAAANAAAAAAAAAA2AAAAAAAAADgAAAAAAAAAOgAAAAAAAAA8AAAAAAAAAD4AAAAAAAAAAABAAAAAAAACAEAAAAAAAAQAQAAAAAAABgBAAAAAAAAIAEAAAAAAAAoAQAAAAAAADABAAAAAAAAOAEAAAAAAABAAQAAAAAAAEgBAAAAAAAAUAEAAAAAAABYAQAAAAAAAGABAAAAAAAAaAEAAAAAAABwAQAAAAAAAHgBAAAAAAAAgAEAAAAAAACIAQAAAAAAAJABAAAAAAAAmAEAAAAAAACgAQAAAAAAAKgBAAAAAAAAsAEAAAAAAAC4AQAAAAAAAMABAAAAAAAAyAEAAAAAAADQAQAAAAAAANgBAAAAAAAA4AEAAAAAAADoAQAAAAAAAPABAAAAAAAA+AEAAAAAAAAAAgAAAAAAAAgCAAAAAAAAEAIAAAAAAAAYAgAAAAAAACACAAAAAAAAKAIAAAAAAAAwAgAAAAAAADgCAAAAAAAAQAIAAAAAAABIAgAAAAAAAFACAAAAAAAAWAIAAAAAAABgAgAAAAAAAGgCAAAAAAAAcAIAAAAAAAB4AgAAAAAAAIACAAAAAAAAiAIAAAAAAACQAgAAAAAAAJgCAAAAAAAAoAIAAAAAAACoAgAAAAAAALACAAAAAAAAuAIAAAAAAADAAgAAAAAAAMgCAAAAAAAA0AIAAAAAAADYAgAAAAAAAOACAAAAAAAA6AIAAAAAAADwAgAAAAAAAPgCAAAAAAAAAAMAAAAAAAAIAwAAAAAAABADAAAAAAAAGAMAAAAAAAAgAwAAAAAAAA==ZAAAAAAAAAAXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcX
+
+
diff --git a/scripts/cmake/Dependencies.cmake b/scripts/cmake/Dependencies.cmake
index a9c2487e8c1..2ddb8aee011 100644
--- a/scripts/cmake/Dependencies.cmake
+++ b/scripts/cmake/Dependencies.cmake
@@ -282,7 +282,7 @@ else()
endif()
if(OGS_BUILD_TESTING OR OGS_BUILD_UTILS)
- CPMAddPackage(NAME vtkdiff GITHUB_REPOSITORY ufz/vtkdiff GIT_TAG master)
+ CPMAddPackage(NAME vtkdiff GITHUB_REPOSITORY ufz/vtkdiff GIT_TAG 9754b4da43c6adfb65d201ed920b5f6ea27b38b9)
if(vtkdiff_ADDED)
install(PROGRAMS $ DESTINATION bin)
endif()