-
Notifications
You must be signed in to change notification settings - Fork 284
/
my_answers.py
46 lines (34 loc) · 1.3 KB
/
my_answers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
import keras
# TODO: fill out the function below that transforms the input series
# and window-size into a set of input/output pairs for use with our RNN model
def window_transform_series(series, window_size):
# containers for input/output pairs
X = []
y = []
# reshape each
X = np.asarray(X)
X.shape = (np.shape(X)[0:2])
y = np.asarray(y)
y.shape = (len(y),1)
return X,y
# TODO: build an RNN to perform regression on our time series input/output data
def build_part1_RNN(window_size):
pass
### TODO: return the text input with only ascii lowercase and the punctuation given below included.
def cleaned_text(text):
punctuation = ['!', ',', '.', ':', ';', '?']
return text
### TODO: fill out the function below that transforms the input text and window-size into a set of input/output pairs for use with our RNN model
def window_transform_text(text, window_size, step_size):
# containers for input/output pairs
inputs = []
outputs = []
return inputs,outputs
# TODO build the required RNN model:
# a single LSTM hidden layer with softmax activation, categorical_crossentropy loss
def build_part2_RNN(window_size, num_chars):
pass