-
Notifications
You must be signed in to change notification settings - Fork 6
/
fidmkf.h
833 lines (736 loc) · 21.1 KB
/
fidmkf.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
//
// mkfilter-derived code
// ---------------------
//
// Copyright (c) 2002-2004 Jim Peters <http://uazu.net/>. This
// file is released under the GNU Lesser General Public License
// (LGPL) version 2.1 as published by the Free Software
// Foundation. See the file COPYING_LIB for details, or visit
// <http://www.fsf.org/licenses/licenses.html>.
//
// This is all code derived from 'mkfilter' by Tony Fisher of the
// University of York. I've rewritten it all in C, and given it
// a thorough overhaul, so there is actually none of his code
// here any more, but it is all still very strongly based on the
// algorithms and techniques that he used in 'mkfilter'.
//
// For those who didn't hear, Tony Fisher died in February 2000
// at the age of 43. See his web-site for information and a
// tribute:
//
// http://www-users.cs.york.ac.uk/~fisher/
// http://www-users.cs.york.ac.uk/~fisher/tribute.html
//
// The original C++ sources and the rest of the mkfilter tool-set
// are still available from his site:
//
// http://www-users.cs.york.ac.uk/~fisher/mkfilter/
//
//
// I've made a number of improvements and changes whilst
// rewriting the code in C. For example, I halved the
// calculations required in designing the filters by storing only
// one complex pole/zero out of each conjugate pair. This also
// made it much easier to output the filter as a list of
// sub-filters without lots of searching around to match up
// conjugate pairs later on. Outputting as a list of subfilters
// permits greater accuracy in calculation of the response, and
// also in the execution of the final filter. Also, some FIR
// coefficients can be marked as 'constant', allowing optimised
// routines to be generated for whole classes of filters, with
// just the variable coefficients filled in at run-time.
//
// On the down-side, complex numbers are not portably available
// in C before C99, so complex calculations here are done on
// double[] arrays with inline functions, which ends up looking
// more like assembly language than C. Never mind.
//
//
// LEGAL STUFF
// -----------
//
// Tony Fisher released his software on his University of York
// pages for free use and free download. The software itself has
// no licence terms attached, nor copyright messages, just the
// author's name, E-mail address and date. Nor are there any
// licence terms indicated on the website. I understand that
// under the Berne convention copyright does not have to be
// claimed explicitly, so these are in fact copyright files by
// legal default. However, the intention was obviously that
// these files should be used by others.
//
// None of this really helps, though, if we're going to try to be
// 100% legally correct, so I wrote to Anthony Moulds who is the
// contact name on Tony Fisher's pages now. I explained what I
// planned to do with the code, and he answered as follows:
//
// (Note that I was planning to use it 'as-is' at that time,
// rather than rewrite it as I have done now)
//
// > To: "Jim Peters" <[email protected]>
// > From: "Anthony Moulds" <[email protected]>
// > Subject: RE: mkfilter source
// > Date: Tue, 29 Oct 2002 15:30:19 -0000
// >
// > Hi Jim,
// >
// > Thanks for your email.
// >
// > The University will be happy to let you use Dr Fisher's mkfilter
// > code since your intention is not to profit financially from his work.
// >
// > It would be nice if in some way you could acknowledge his contribution.
// >
// > Best wishes and good luck with your work,
// >
// > Anthony Moulds
// > Senior Experimental Officer,
// > Computer Science Department, University of York,
// > York, England, UK. Tel: 44(0)1904 434758 Fax: 44(0)19042767
// > ============================================================
// >
// >
// > > -----Original Message-----
// > > From: Jim Peters [mailto:[email protected]]
// > > Sent: Monday, October 28, 2002 12:36 PM
// > > To: [email protected]
// > > Subject: mkfilter source
// > >
// > >
// > > I'm very sorry to hear (rather late, I know) that Tony Fisher died --
// > > I've always gone straight to the filter page, rather than through his
// > > home page. I hope his work remains available for the future.
// > >
// > > Anyway, the reason I'm writing is to clarify the status of the
// > > mkfilter source code. Because copyright is not claimed on the web
// > > page nor in the source distribution, I guess that Tony's intention was
// > > that this code should be in the public domain. However, I would like
// > > to check this now to avoid complications later.
// > >
// > > I am using his code, modified, to provide a library of filter-design
// > > routines for a GPL'd filter design app, which is not yet released.
// > > The library could also be used standalone, permitting apps to design
// > > filters at run-time rather than using hard-coded compile-time filters.
// > > My interest in filters is as a part of my work on the OpenEEG project
//
// So this looks pretty clear to me. I am not planning to profit
// from the work, so everything is fine with the University. I
// guess others might profit from the work, indirectly, as with
// any free software release, but so long as I don't, we're fine.
//
// I hope this is watertight enough for Debian/etc. Otherwise
// I'll have to go back to Anthony Moulds for clarification.
//
// Even though there is no code cut-and-pasted from 'mkfilter'
// here, it is all very obviously based on that code, so it
// probably counts as a derived work -- although as ever "I Am
// Not A Lawyer".
//
#ifdef HUGE_VAL
#define INF HUGE_VAL
#else
#define INF (1.0/0.0)
#endif
#define TWOPI (2*M_PI)
//
// Complex square root: aa= aa^0.5
//
STATIC_INLINE double
my_sqrt(double aa) {
return aa <= 0.0 ? 0.0 : sqrt(aa);
}
// 'csqrt' clashes with builtin in GCC 4, so call it 'c_sqrt'
STATIC_INLINE void
c_sqrt(double *aa) {
double mag= hypot(aa[0], aa[1]);
double rr= my_sqrt((mag + aa[0]) * 0.5);
double ii= my_sqrt((mag - aa[0]) * 0.5);
if (aa[1] < 0.0) ii= -ii;
aa[0]= rr;
aa[1]= ii;
}
//
// Complex imaginary exponent: aa= e^i.theta
//
STATIC_INLINE void
cexpj(double *aa, double theta) {
aa[0]= cos(theta);
aa[1]= sin(theta);
}
//
// Complex exponent: aa= e^aa
//
// 'cexp' clashes with builtin in GCC 4, so call it 'c_exp'
STATIC_INLINE void
c_exp(double *aa) {
double mag= exp(aa[0]);
aa[0]= mag * cos(aa[1]);
aa[1]= mag * sin(aa[1]);
}
//
// Global temp buffer for generating filters. *NOT THREAD SAFE*
//
// Note that the poles and zeros are stored in a strange way.
// Rather than storing both a pole (or zero) and its complex
// conjugate, I'm storing just one of the pair. Also, for real
// poles, I'm not storing the imaginary part (which is zero).
// This results in a list of numbers exactly half the length you
// might otherwise expect. However, since some of these numbers
// are in pairs, and some are single, we need a separate flag
// array to indicate which is which. poltyp[] serves this
// purpose. An entry is 1 if the corresponding offset is a real
// pole, or 2 if it is the first of a pair of values making up a
// complex pole. The second value of the pair has an entry of 0
// attached. (Similarly for zeros in zertyp[])
//
#define MAXPZ 64
static int n_pol; // Number of poles
static double pol[MAXPZ]; // Pole values (see above)
static char poltyp[MAXPZ]; // Pole value types: 1 real, 2 first of complex pair, 0 second
static int n_zer; // Same for zeros ...
static double zer[MAXPZ];
static char zertyp[MAXPZ];
//
// Pre-warp a frequency
//
STATIC_INLINE double
prewarp(double val) {
return tan(val * M_PI) / M_PI;
}
//
// Bessel poles; final one is a real value for odd numbers of
// poles
//
static double bessel_1[]= {
-1.00000000000e+00
};
static double bessel_2[]= {
-1.10160133059e+00, 6.36009824757e-01,
};
static double bessel_3[]= {
-1.04740916101e+00, 9.99264436281e-01,
-1.32267579991e+00,
};
static double bessel_4[]= {
-9.95208764350e-01, 1.25710573945e+00,
-1.37006783055e+00, 4.10249717494e-01,
};
static double bessel_5[]= {
-9.57676548563e-01, 1.47112432073e+00,
-1.38087732586e+00, 7.17909587627e-01,
-1.50231627145e+00,
};
static double bessel_6[]= {
-9.30656522947e-01, 1.66186326894e+00,
-1.38185809760e+00, 9.71471890712e-01,
-1.57149040362e+00, 3.20896374221e-01,
};
static double bessel_7[]= {
-9.09867780623e-01, 1.83645135304e+00,
-1.37890321680e+00, 1.19156677780e+00,
-1.61203876622e+00, 5.89244506931e-01,
-1.68436817927e+00,
};
static double bessel_8[]= {
-8.92869718847e-01, 1.99832584364e+00,
-1.37384121764e+00, 1.38835657588e+00,
-1.63693941813e+00, 8.22795625139e-01,
-1.75740840040e+00, 2.72867575103e-01,
};
static double bessel_9[]= {
-8.78399276161e-01, 2.14980052431e+00,
-1.36758830979e+00, 1.56773371224e+00,
-1.65239648458e+00, 1.03138956698e+00,
-1.80717053496e+00, 5.12383730575e-01,
-1.85660050123e+00,
};
static double bessel_10[]= {
-8.65756901707e-01, 2.29260483098e+00,
-1.36069227838e+00, 1.73350574267e+00,
-1.66181024140e+00, 1.22110021857e+00,
-1.84219624443e+00, 7.27257597722e-01,
-1.92761969145e+00, 2.41623471082e-01,
};
static double *bessel_poles[10]= {
bessel_1, bessel_2, bessel_3, bessel_4, bessel_5,
bessel_6, bessel_7, bessel_8, bessel_9, bessel_10
};
//
// Generate Bessel poles for the given order.
//
static void
bessel(int order) {
int a;
if (order > 10) error("Maximum Bessel order is 10");
n_pol= order;
memcpy(pol, bessel_poles[order-1], n_pol * sizeof(double));
for (a= 0; a<order-1; ) {
poltyp[a++]= 2;
poltyp[a++]= 0;
}
if (a < order)
poltyp[a++]= 1;
}
//
// Generate Butterworth poles for the given order. These are
// regularly-spaced points on the unit circle to the left of the
// real==0 line.
//
static void
butterworth(int order) {
int a;
if (order > MAXPZ)
error("Maximum butterworth/chebyshev order is %d", MAXPZ);
n_pol= order;
for (a= 0; a<order-1; a += 2) {
poltyp[a]= 2;
poltyp[a+1]= 0;
cexpj(pol+a, M_PI - (order-a-1) * 0.5 * M_PI / order);
}
if (a < order) {
poltyp[a]= 1;
pol[a]= -1.0;
}
}
//
// Generate Chebyshev poles for the given order and ripple.
//
static void
chebyshev(int order, double ripple) {
double eps, y;
double sh, ch;
int a;
butterworth(order);
if (ripple >= 0.0) error("Chebyshev ripple in dB should be -ve");
eps= sqrt(-1.0 + pow(10.0, -0.1 * ripple));
y= asinh(1.0 / eps) / order;
if (y <= 0.0) error("Internal error; chebyshev y-value <= 0.0: %g", y);
sh= sinh(y);
ch= cosh(y);
for (a= 0; a<n_pol; ) {
if (poltyp[a] == 1)
pol[a++] *= sh;
else {
pol[a++] *= sh;
pol[a++] *= ch;
}
}
}
//
// Adjust raw poles to LP filter
//
static void
lowpass(double freq) {
int a;
// Adjust poles
freq *= TWOPI;
for (a= 0; a<n_pol; a++)
pol[a] *= freq;
// Add zeros
n_zer= n_pol;
for (a= 0; a<n_zer; a++) {
zer[a]= -INF;
zertyp[a]= 1;
}
}
//
// Adjust raw poles to HP filter
//
static void
highpass(double freq) {
int a;
// Adjust poles
freq *= TWOPI;
for (a= 0; a<n_pol; ) {
if (poltyp[a] == 1) {
pol[a]= freq / pol[a];
a++;
} else {
crecip(pol + a);
pol[a++] *= freq;
pol[a++] *= freq;
}
}
// Add zeros
n_zer= n_pol;
for (a= 0; a<n_zer; a++) {
zer[a]= 0.0;
zertyp[a]= 1;
}
}
//
// Adjust raw poles to BP filter. The number of poles is
// doubled.
//
static void
bandpass(double freq1, double freq2) {
double w0= TWOPI * sqrt(freq1*freq2);
double bw= 0.5 * TWOPI * (freq2-freq1);
int a, b;
if (n_pol * 2 > MAXPZ)
error("Maximum order for bandpass filters is %d", MAXPZ/2);
// Run through the list backwards, expanding as we go
for (a= n_pol, b= n_pol*2; a>0; ) {
// hba= pole * bw;
// temp= c_sqrt(1.0 - square(w0 / hba));
// pole1= hba * (1.0 + temp);
// pole2= hba * (1.0 - temp);
if (poltyp[a-1] == 1) {
double hba;
a--; b -= 2;
poltyp[b]= 2; poltyp[b+1]= 0;
hba= pol[a] * bw;
cassz(pol+b, 1.0 - (w0 / hba) * (w0 / hba), 0.0);
c_sqrt(pol+b);
caddz(pol+b, 1.0, 0.0);
cmulr(pol+b, hba);
} else { // Assume poltyp[] data is valid
double hba[2];
a -= 2; b -= 4;
poltyp[b]= 2; poltyp[b+1]= 0;
poltyp[b+2]= 2; poltyp[b+3]= 0;
cass(hba, pol+a);
cmulr(hba, bw);
cass(pol+b, hba);
crecip(pol+b);
cmulr(pol+b, w0);
csqu(pol+b);
cneg(pol+b);
caddz(pol+b, 1.0, 0.0);
c_sqrt(pol+b);
cmul(pol+b, hba);
cass(pol+b+2, pol+b);
cneg(pol+b+2);
cadd(pol+b, hba);
cadd(pol+b+2, hba);
}
}
n_pol *= 2;
// Add zeros
n_zer= n_pol;
for (a= 0; a<n_zer; a++) {
zertyp[a]= 1;
zer[a]= (a<n_zer/2) ? 0.0 : -INF;
}
}
//
// Adjust raw poles to BS filter. The number of poles is
// doubled.
//
static void
bandstop(double freq1, double freq2) {
double w0= TWOPI * sqrt(freq1*freq2);
double bw= 0.5 * TWOPI * (freq2-freq1);
int a, b;
if (n_pol * 2 > MAXPZ)
error("Maximum order for bandstop filters is %d", MAXPZ/2);
// Run through the list backwards, expanding as we go
for (a= n_pol, b= n_pol*2; a>0; ) {
// hba= bw / pole;
// temp= c_sqrt(1.0 - square(w0 / hba));
// pole1= hba * (1.0 + temp);
// pole2= hba * (1.0 - temp);
if (poltyp[a-1] == 1) {
double hba;
a--; b -= 2;
poltyp[b]= 2; poltyp[b+1]= 0;
hba= bw / pol[a];
cassz(pol+b, 1.0 - (w0 / hba) * (w0 / hba), 0.0);
c_sqrt(pol+b);
caddz(pol+b, 1.0, 0.0);
cmulr(pol+b, hba);
} else { // Assume poltyp[] data is valid
double hba[2];
a -= 2; b -= 4;
poltyp[b]= 2; poltyp[b+1]= 0;
poltyp[b+2]= 2; poltyp[b+3]= 0;
cass(hba, pol+a);
crecip(hba);
cmulr(hba, bw);
cass(pol+b, hba);
crecip(pol+b);
cmulr(pol+b, w0);
csqu(pol+b);
cneg(pol+b);
caddz(pol+b, 1.0, 0.0);
c_sqrt(pol+b);
cmul(pol+b, hba);
cass(pol+b+2, pol+b);
cneg(pol+b+2);
cadd(pol+b, hba);
cadd(pol+b+2, hba);
}
}
n_pol *= 2;
// Add zeros
n_zer= n_pol;
for (a= 0; a<n_zer; a+=2) {
zertyp[a]= 2; zertyp[a+1]= 0;
zer[a]= 0.0; zer[a+1]= w0;
}
}
//
// Convert list of poles+zeros from S to Z using bilinear
// transform
//
static void
s2z_bilinear() {
int a;
for (a= 0; a<n_pol; ) {
// Calculate (2 + val) / (2 - val)
if (poltyp[a] == 1) {
if (pol[a] == -INF)
pol[a]= -1.0;
else
pol[a]= (2 + pol[a]) / (2 - pol[a]);
a++;
} else {
double val[2];
cass(val, pol+a);
cneg(val);
caddz(val, 2, 0);
caddz(pol+a, 2, 0);
cdiv(pol+a, val);
a += 2;
}
}
for (a= 0; a<n_zer; ) {
// Calculate (2 + val) / (2 - val)
if (zertyp[a] == 1) {
if (zer[a] == -INF)
zer[a]= -1.0;
else
zer[a]= (2 + zer[a]) / (2 - zer[a]);
a++;
} else {
double val[2];
cass(val, zer+a);
cneg(val);
caddz(val, 2, 0);
caddz(zer+a, 2, 0);
cdiv(zer+a, val);
a += 2;
}
}
}
//
// Convert S to Z using matched-Z transform
//
static void
s2z_matchedZ() {
int a;
for (a= 0; a<n_pol; ) {
// Calculate cexp(val)
if (poltyp[a] == 1) {
if (pol[a] == -INF)
pol[a]= 0.0;
else
pol[a]= exp(pol[a]);
a++;
} else {
c_exp(pol+a);
a += 2;
}
}
for (a= 0; a<n_zer; ) {
// Calculate cexp(val)
if (zertyp[a] == 1) {
if (zer[a] == -INF)
zer[a]= 0.0;
else
zer[a]= exp(zer[a]);
a++;
} else {
c_exp(zer+a);
a += 2;
}
}
}
//
// Generate a FidFilter for the current set of poles and zeros.
// The given gain is inserted at the start of the FidFilter as a
// one-coefficient FIR filter. This is positioned to be easily
// adjusted later to correct the filter gain.
//
// 'cbm' should be a bitmap indicating which FIR coefficients are
// constants for this filter type. Normal values are ~0 for all
// constant, or 0 for none constant, or some other bitmask for a
// mixture. Filters generated with lowpass(), highpass() and
// bandpass() above should pass ~0, but bandstop() requires 0x5.
//
// This routine requires that any lone real poles/zeros are at
// the end of the list. All other poles/zeros are handled in
// pairs (whether pairs of real poles/zeros, or conjugate pairs).
//
static FidFilter*
z2fidfilter(double gain, int cbm) {
int n_head, n_val;
int a;
FidFilter *rv;
FidFilter *ff;
n_head= 1 + n_pol + n_zer; // Worst case: gain + 2-element IIR/FIR
n_val= 1 + 2 * (n_pol+n_zer); // for each pole/zero
rv= ff= FFALLOC(n_head, n_val);
ff->typ= 'F';
ff->len= 1;
ff->val[0]= gain;
ff= FFNEXT(ff);
// Output as much as possible as 2x2 IIR/FIR filters
for (a= 0; a <= n_pol-2 && a <= n_zer-2; a += 2) {
// Look for a pair of values for an IIR
if (poltyp[a] == 1 && poltyp[a+1] == 1) {
// Two real values
ff->typ= 'I';
ff->len= 3;
ff->val[0]= 1;
ff->val[1]= -(pol[a] + pol[a+1]);
ff->val[2]= pol[a] * pol[a+1];
ff= FFNEXT(ff);
} else if (poltyp[a] == 2) {
// A complex value and its conjugate pair
ff->typ= 'I';
ff->len= 3;
ff->val[0]= 1;
ff->val[1]= -2 * pol[a];
ff->val[2]= pol[a] * pol[a] + pol[a+1] * pol[a+1];
ff= FFNEXT(ff);
} else error("Internal error -- bad poltyp[] values for z2fidfilter()");
// Look for a pair of values for an FIR
if (zertyp[a] == 1 && zertyp[a+1] == 1) {
// Two real values
// Skip if constant and 0/0
if (!cbm || zer[a] != 0.0 || zer[a+1] != 0.0) {
ff->typ= 'F';
ff->cbm= cbm;
ff->len= 3;
ff->val[0]= 1;
ff->val[1]= -(zer[a] + zer[a+1]);
ff->val[2]= zer[a] * zer[a+1];
ff= FFNEXT(ff);
}
} else if (zertyp[a] == 2) {
// A complex value and its conjugate pair
// Skip if constant and 0/0
if (!cbm || zer[a] != 0.0 || zer[a+1] != 0.0) {
ff->typ= 'F';
ff->cbm= cbm;
ff->len= 3;
ff->val[0]= 1;
ff->val[1]= -2 * zer[a];
ff->val[2]= zer[a] * zer[a] + zer[a+1] * zer[a+1];
ff= FFNEXT(ff);
}
} else error("Internal error -- bad zertyp[] values");
}
// Clear up any remaining bits and pieces. Should only be a 1x1
// IIR/FIR.
if (n_pol-a == 0 && n_zer-a == 0)
;
else if (n_pol-a == 1 && n_zer-a == 1) {
if (poltyp[a] != 1 || zertyp[a] != 1)
error("Internal error; bad poltyp or zertyp for final pole/zero");
ff->typ= 'I';
ff->len= 2;
ff->val[0]= 1;
ff->val[1]= -pol[a];
ff= FFNEXT(ff);
// Skip FIR if it is constant and zero
if (!cbm || zer[a] != 0.0) {
ff->typ= 'F';
ff->cbm= cbm;
ff->len= 2;
ff->val[0]= 1;
ff->val[1]= -zer[a];
ff= FFNEXT(ff);
}
} else
error("Internal error: unexpected poles/zeros at end of list");
// End of list
ff->typ= 0;
ff->len= 0;
ff= FFNEXT(ff);
rv= realloc(rv, ((char*)ff)-((char*)rv));
if (!rv) error("Out of memory");
return rv;
}
//
// Setup poles/zeros for a band-pass resonator. 'qfact' gives
// the Q-factor; 0 is a special value indicating +infinity,
// giving an oscillator.
//
static void
bandpass_res(double freq, double qfact) {
double mag;
double th0, th1, th2;
double theta= freq * TWOPI;
double val[2];
double tmp1[2], tmp2[2], tmp3[2], tmp4[2];
int cnt;
n_pol= 2;
poltyp[0]= 2; poltyp[1]= 0;
n_zer= 2;
zertyp[0]= 1; zertyp[1]= 1;
zer[0]= 1; zer[1]= -1;
if (qfact == 0.0) {
cexpj(pol, theta);
return;
}
// Do a full binary search, rather than seeding it as Tony Fisher does
cexpj(val, theta);
mag= exp(-theta / (2.0 * qfact));
th0= 0; th2= M_PI;
for (cnt= 60; cnt > 0; cnt--) {
th1= 0.5 * (th0 + th2);
cexpj(pol, th1);
cmulr(pol, mag);
// Evaluate response of filter for Z= val
memcpy(tmp1, val, 2*sizeof(double));
memcpy(tmp2, val, 2*sizeof(double));
memcpy(tmp3, val, 2*sizeof(double));
memcpy(tmp4, val, 2*sizeof(double));
csubz(tmp1, 1, 0);
csubz(tmp2, -1, 0);
cmul(tmp1, tmp2);
csub(tmp3, pol); cconj(pol);
csub(tmp4, pol); cconj(pol);
cmul(tmp3, tmp4);
cdiv(tmp1, tmp3);
if (fabs(tmp1[1] / tmp1[0]) < 1e-10) break;
//printf("%-24.16g%-24.16g -> %-24.16g%-24.16g\n", th0, th2, tmp1[0], tmp1[1]);
if (tmp1[1] > 0.0) th2= th1;
else th0= th1;
}
if (cnt <= 0) fprintf(stderr, "Resonator binary search failed to converge");
}
//
// Setup poles/zeros for a bandstop resonator
//
static void
bandstop_res(double freq, double qfact) {
bandpass_res(freq, qfact);
zertyp[0]= 2; zertyp[1]= 0;
cexpj(zer, TWOPI * freq);
}
//
// Setup poles/zeros for an allpass resonator
//
static void
allpass_res(double freq, double qfact) {
bandpass_res(freq, qfact);
zertyp[0]= 2; zertyp[1]= 0;
memcpy(zer, pol, 2*sizeof(double));
cmulr(zer, 1.0 / (zer[0]*zer[0] + zer[1]*zer[1]));
}
//
// Setup poles/zeros for a proportional-integral filter
//
static void
prop_integral(double freq) {
n_pol= 1;
poltyp[0]= 1;
pol[0]= 0.0;
n_zer= 1;
zertyp[0]= 1;
zer[0]= -TWOPI * freq;
}
// END //