forked from JonathonLuiten/Dynamic3DGaussians
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
225 lines (191 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch
import os
import json
import copy
import numpy as np
from PIL import Image
from random import randint
from tqdm import tqdm
from diff_gaussian_rasterization import GaussianRasterizer as Renderer
from helpers import setup_camera, l1_loss_v1, l1_loss_v2, weighted_l2_loss_v1, weighted_l2_loss_v2, quat_mult, \
o3d_knn, params2rendervar, params2cpu, save_params
from external import calc_ssim, calc_psnr, build_rotation, densify, update_params_and_optimizer
def get_dataset(t, md, seq):
dataset = []
for c in range(len(md['fn'][t])):
w, h, k, w2c = md['w'], md['h'], md['k'][t][c], md['w2c'][t][c]
cam = setup_camera(w, h, k, w2c, near=1.0, far=100)
fn = md['fn'][t][c]
im = np.array(copy.deepcopy(Image.open(f"./data/{seq}/ims/{fn}")))
im = torch.tensor(im).float().cuda().permute(2, 0, 1) / 255
seg = np.array(copy.deepcopy(Image.open(f"./data/{seq}/seg/{fn.replace('.jpg', '.png')}"))).astype(np.float32)
seg = torch.tensor(seg).float().cuda()
seg_col = torch.stack((seg, torch.zeros_like(seg), 1 - seg))
dataset.append({'cam': cam, 'im': im, 'seg': seg_col, 'id': c})
return dataset
def get_batch(todo_dataset, dataset):
if not todo_dataset:
todo_dataset = dataset.copy()
curr_data = todo_dataset.pop(randint(0, len(todo_dataset) - 1))
return curr_data
def initialize_params(seq, md):
init_pt_cld = np.load(f"./data/{seq}/init_pt_cld.npz")["data"]
seg = init_pt_cld[:, 6]
max_cams = 50
sq_dist, _ = o3d_knn(init_pt_cld[:, :3], 3)
mean3_sq_dist = sq_dist.mean(-1).clip(min=0.0000001)
params = {
'means3D': init_pt_cld[:, :3],
'rgb_colors': init_pt_cld[:, 3:6],
'seg_colors': np.stack((seg, np.zeros_like(seg), 1 - seg), -1),
'unnorm_rotations': np.tile([1, 0, 0, 0], (seg.shape[0], 1)),
'logit_opacities': np.zeros((seg.shape[0], 1)),
'log_scales': np.tile(np.log(np.sqrt(mean3_sq_dist))[..., None], (1, 3)),
'cam_m': np.zeros((max_cams, 3)),
'cam_c': np.zeros((max_cams, 3)),
}
params = {k: torch.nn.Parameter(torch.tensor(v).cuda().float().contiguous().requires_grad_(True)) for k, v in
params.items()}
cam_centers = np.linalg.inv(md['w2c'][0])[:, :3, 3] # Get scene radius
scene_radius = 1.1 * np.max(np.linalg.norm(cam_centers - np.mean(cam_centers, 0)[None], axis=-1))
variables = {'max_2D_radius': torch.zeros(params['means3D'].shape[0]).cuda().float(),
'scene_radius': scene_radius,
'means2D_gradient_accum': torch.zeros(params['means3D'].shape[0]).cuda().float(),
'denom': torch.zeros(params['means3D'].shape[0]).cuda().float()}
return params, variables
def initialize_optimizer(params, variables):
lrs = {
'means3D': 0.00016 * variables['scene_radius'],
'rgb_colors': 0.0025,
'seg_colors': 0.0,
'unnorm_rotations': 0.001,
'logit_opacities': 0.05,
'log_scales': 0.001,
'cam_m': 1e-4,
'cam_c': 1e-4,
}
param_groups = [{'params': [v], 'name': k, 'lr': lrs[k]} for k, v in params.items()]
return torch.optim.Adam(param_groups, lr=0.0, eps=1e-15)
def get_loss(params, curr_data, variables, is_initial_timestep):
losses = {}
rendervar = params2rendervar(params)
rendervar['means2D'].retain_grad()
im, radius, _, = Renderer(raster_settings=curr_data['cam'])(**rendervar)
curr_id = curr_data['id']
im = torch.exp(params['cam_m'][curr_id])[:, None, None] * im + params['cam_c'][curr_id][:, None, None]
losses['im'] = 0.8 * l1_loss_v1(im, curr_data['im']) + 0.2 * (1.0 - calc_ssim(im, curr_data['im']))
variables['means2D'] = rendervar['means2D'] # Gradient only accum from colour render for densification
segrendervar = params2rendervar(params)
segrendervar['colors_precomp'] = params['seg_colors']
seg, _, _, = Renderer(raster_settings=curr_data['cam'])(**segrendervar)
losses['seg'] = 0.8 * l1_loss_v1(seg, curr_data['seg']) + 0.2 * (1.0 - calc_ssim(seg, curr_data['seg']))
if not is_initial_timestep:
is_fg = (params['seg_colors'][:, 0] > 0.5).detach()
fg_pts = rendervar['means3D'][is_fg]
fg_rot = rendervar['rotations'][is_fg]
rel_rot = quat_mult(fg_rot, variables["prev_inv_rot_fg"])
rot = build_rotation(rel_rot)
neighbor_pts = fg_pts[variables["neighbor_indices"]]
curr_offset = neighbor_pts - fg_pts[:, None]
curr_offset_in_prev_coord = (rot.transpose(2, 1)[:, None] @ curr_offset[:, :, :, None]).squeeze(-1)
losses['rigid'] = weighted_l2_loss_v2(curr_offset_in_prev_coord, variables["prev_offset"],
variables["neighbor_weight"])
losses['rot'] = weighted_l2_loss_v2(rel_rot[variables["neighbor_indices"]], rel_rot[:, None],
variables["neighbor_weight"])
curr_offset_mag = torch.sqrt((curr_offset ** 2).sum(-1) + 1e-20)
losses['iso'] = weighted_l2_loss_v1(curr_offset_mag, variables["neighbor_dist"], variables["neighbor_weight"])
losses['floor'] = torch.clamp(fg_pts[:, 1], min=0).mean()
bg_pts = rendervar['means3D'][~is_fg]
bg_rot = rendervar['rotations'][~is_fg]
losses['bg'] = l1_loss_v2(bg_pts, variables["init_bg_pts"]) + l1_loss_v2(bg_rot, variables["init_bg_rot"])
losses['soft_col_cons'] = l1_loss_v2(params['rgb_colors'], variables["prev_col"])
loss_weights = {'im': 1.0, 'seg': 3.0, 'rigid': 4.0, 'rot': 4.0, 'iso': 2.0, 'floor': 2.0, 'bg': 20.0,
'soft_col_cons': 0.01}
loss = sum([loss_weights[k] * v for k, v in losses.items()])
seen = radius > 0
variables['max_2D_radius'][seen] = torch.max(radius[seen], variables['max_2D_radius'][seen])
variables['seen'] = seen
return loss, variables
def initialize_per_timestep(params, variables, optimizer):
pts = params['means3D']
rot = torch.nn.functional.normalize(params['unnorm_rotations'])
new_pts = pts + (pts - variables["prev_pts"])
new_rot = torch.nn.functional.normalize(rot + (rot - variables["prev_rot"]))
is_fg = params['seg_colors'][:, 0] > 0.5
prev_inv_rot_fg = rot[is_fg]
prev_inv_rot_fg[:, 1:] = -1 * prev_inv_rot_fg[:, 1:]
fg_pts = pts[is_fg]
prev_offset = fg_pts[variables["neighbor_indices"]] - fg_pts[:, None]
variables['prev_inv_rot_fg'] = prev_inv_rot_fg.detach()
variables['prev_offset'] = prev_offset.detach()
variables["prev_col"] = params['rgb_colors'].detach()
variables["prev_pts"] = pts.detach()
variables["prev_rot"] = rot.detach()
new_params = {'means3D': new_pts, 'unnorm_rotations': new_rot}
params = update_params_and_optimizer(new_params, params, optimizer)
return params, variables
def initialize_post_first_timestep(params, variables, optimizer, num_knn=20):
is_fg = params['seg_colors'][:, 0] > 0.5
init_fg_pts = params['means3D'][is_fg]
init_bg_pts = params['means3D'][~is_fg]
init_bg_rot = torch.nn.functional.normalize(params['unnorm_rotations'][~is_fg])
neighbor_sq_dist, neighbor_indices = o3d_knn(init_fg_pts.detach().cpu().numpy(), num_knn)
neighbor_weight = np.exp(-2000 * neighbor_sq_dist)
neighbor_dist = np.sqrt(neighbor_sq_dist)
variables["neighbor_indices"] = torch.tensor(neighbor_indices).cuda().long().contiguous()
variables["neighbor_weight"] = torch.tensor(neighbor_weight).cuda().float().contiguous()
variables["neighbor_dist"] = torch.tensor(neighbor_dist).cuda().float().contiguous()
variables["init_bg_pts"] = init_bg_pts.detach()
variables["init_bg_rot"] = init_bg_rot.detach()
variables["prev_pts"] = params['means3D'].detach()
variables["prev_rot"] = torch.nn.functional.normalize(params['unnorm_rotations']).detach()
params_to_fix = ['logit_opacities', 'log_scales', 'cam_m', 'cam_c']
for param_group in optimizer.param_groups:
if param_group["name"] in params_to_fix:
param_group['lr'] = 0.0
return variables
def report_progress(params, data, i, progress_bar, every_i=100):
if i % every_i == 0:
im, _, _, = Renderer(raster_settings=data['cam'])(**params2rendervar(params))
curr_id = data['id']
im = torch.exp(params['cam_m'][curr_id])[:, None, None] * im + params['cam_c'][curr_id][:, None, None]
psnr = calc_psnr(im, data['im']).mean()
progress_bar.set_postfix({"train img 0 PSNR": f"{psnr:.{7}f}"})
progress_bar.update(every_i)
def train(seq, exp):
if os.path.exists(f"./output/{exp}/{seq}"):
print(f"Experiment '{exp}' for sequence '{seq}' already exists. Exiting.")
return
md = json.load(open(f"./data/{seq}/train_meta.json", 'r')) # metadata
num_timesteps = len(md['fn'])
params, variables = initialize_params(seq, md)
optimizer = initialize_optimizer(params, variables)
output_params = []
for t in range(num_timesteps):
dataset = get_dataset(t, md, seq)
todo_dataset = []
is_initial_timestep = (t == 0)
if not is_initial_timestep:
params, variables = initialize_per_timestep(params, variables, optimizer)
num_iter_per_timestep = 10000 if is_initial_timestep else 2000
progress_bar = tqdm(range(num_iter_per_timestep), desc=f"timestep {t}")
for i in range(num_iter_per_timestep):
curr_data = get_batch(todo_dataset, dataset)
loss, variables = get_loss(params, curr_data, variables, is_initial_timestep)
loss.backward()
with torch.no_grad():
report_progress(params, dataset[0], i, progress_bar)
if is_initial_timestep:
params, variables = densify(params, variables, optimizer, i)
optimizer.step()
optimizer.zero_grad(set_to_none=True)
progress_bar.close()
output_params.append(params2cpu(params, is_initial_timestep))
if is_initial_timestep:
variables = initialize_post_first_timestep(params, variables, optimizer)
save_params(output_params, seq, exp)
if __name__ == "__main__":
exp_name = "exp1"
for sequence in ["basketball", "boxes", "football", "juggle", "softball", "tennis"]:
train(sequence, exp_name)
torch.cuda.empty_cache()