-
Notifications
You must be signed in to change notification settings - Fork 0
/
quantize_model.py
147 lines (117 loc) · 5.44 KB
/
quantize_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from __future__ import print_function
import os
import argparse
import shutil
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from compute_flops import print_model_param_flops
import models
import time
import numpy as np
from functools import partial
from quantize import Quantizer
def conv2d_Q_fn(w_bit):
class Conv2d_Q(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv2d_Q, self).__init__(in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias)
self.w_bit = w_bit
self.quantize_fn = weight_quantize_fn(w_bit=w_bit)
def forward(self, input, order=None):
weight_q = self.quantize_fn(self.weight)
# print(np.unique(weight_q.detach().numpy()))
return F.conv2d(input, weight_q, self.bias, self.stride,
self.padding, self.dilation, self.groups)
return Conv2d_Q
def linear_Q_fn(w_bit):
class Linear_Q(nn.Linear):
def __init__(self, in_features, out_features, bias=True):
super(Linear_Q, self).__init__(in_features, out_features, bias)
self.w_bit = w_bit
self.quantize_fn = weight_quantize_fn(w_bit=w_bit)
def forward(self, input):
weight_q = self.quantize_fn(self.weight)
# print(np.unique(weight_q.detach().numpy()))
return F.linear(input, weight_q, self.bias)
return Linear_Q
parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR training')
parser.add_argument('--dataset', type=str, default='cifar100',
help='training dataset (default: cifar100)')
parser.add_argument('--test-batch-size', type=int, default=128, metavar='N',
help='input batch size for testing (default: 256)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save', default='./logs', type=str, metavar='PATH',
help='path to save prune model (default: current directory)')
parser.add_argument('--pruned', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--abit', type=int, default=1, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--wbit', type=int, default=4, metavar='N',
help='input batch size for training (default: 64)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if not os.path.exists(args.save):
os.makedirs(args.save)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
if args.dataset == 'cifar10':
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
else:
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
]),download=True),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
assert args.pruned
model = torch.load(args.pruned)
if args.cuda:
model.cuda()
rule = []
for name, param in model.named_parameters():
rule.append((name, 'linear', args.wbit, 1))
quantizer = Quantizer(rule=rule, fix_zeros=True)
print(model)
params = sum(p.numel() for name, p in model.named_parameters() if p.requires_grad)
print("param count", params, '@ {:.2f} M'.format(params/1e6))
base_flops = print_model_param_flops(model, 32, multiply_adds=True)
print("FLOPs count", base_flops, '@ {:.2f} GFLOPs'.format(base_flops/1e9))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.cross_entropy(output, target, size_average=False).item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.1f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
return float(correct) / float(len(test_loader.dataset))
with torch.no_grad():
quantizer.quantize(model=model)
prec1 = test()
torch.save(model, os.path.join(args.save, 'quantized_model.pth.tar'))