-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
121 lines (109 loc) · 4.71 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from __future__ import print_function
import os
import argparse
import shutil
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from compute_flops import print_model_param_flops
import models
import time
import numpy as np
REF_PARAM=36.5e6
REF_FLOPS=10.49e9
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR training')
parser.add_argument('--dataset', type=str, default='cifar100',
help='training dataset (default: cifar100)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--pruned', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--freebie', action='store_true', default=False,
help='16-bit')
parser.add_argument('--half', action='store_true', default=False,
help='half-precision')
parser.add_argument('--nbit', type=int, default=32, metavar='N',
help='weight bit')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
if args.dataset == 'cifar10':
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
else:
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
]), download=True),
batch_size=args.batch_size, shuffle=True, **kwargs)
assert args.pruned
# model = torch.load(args.pruned)
model = torch.load(args.pruned, map_location='cpu')
if args.cuda:
model.cuda()
print(model)
print("-"*80)
print("Freebie 16-bit is", args.freebie)
print("Pytorch half-precision is", args.half)
print("Weight-bit is", args.nbit)
base_params = sum(p.numel() for name, p in model.named_parameters())
mult = 1
if args.freebie:
assert args.nbit == 32
args.nbit=16
mult = 32//args.nbit
print("params count / ", mult)
params = base_params // mult
print("original param count", base_params, '@ {:.2f} M'.format(base_params/1e6))
print("quantized param count", params, '@ {:.2f} M'.format(params/1e6))
base_flops = print_model_param_flops(model, 32, multiply_adds=True, freebie=False) # only either 32 or 16 bit
flops = print_model_param_flops(model, 32, multiply_adds=True, freebie=args.freebie or args.half) # only either 32 or 16 bit
print("original FLOPs count", base_flops, '@ {:.2f} GFLOPs'.format(base_flops/1e9))
print("FLOPs count", flops, '@ {:.2f} GFLOPs'.format(flops/1e9))
print("-"*80)
print("Reference param count", REF_PARAM, '@ {:.2f} M'.format(REF_PARAM/1e6))
print("Reference FLOPs count", REF_FLOPS, '@ {:.2f} GFLOPs'.format(REF_FLOPS/1e9))
param_score = params/REF_PARAM
flops_score = flops/REF_FLOPS
score = param_score + flops_score
print("-"*80)
print("Score = Param/refParam + FLOPs/refFLOPs = {:.5f} + {:.5f} = {:.5f}".format(param_score, flops_score, score))
print("-"*80)
if args.half:
model = model.half()
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
if args.half:
data = data.half()
output = model(data)
test_loss += F.cross_entropy(output, target, size_average=False).item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
return float(correct) / float(len(test_loader.dataset))
test()