-
Notifications
You must be signed in to change notification settings - Fork 0
/
partial_sums_of_gcd-sum_function_fast.sf
92 lines (67 loc) · 2.24 KB
/
partial_sums_of_gcd-sum_function_fast.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/ruby
# Daniel "Trizen" Șuteu
# Date: 04 February 2019
# https://github.com/trizen
# A sublinear algorithm for computing the partial sums of the gcd-sum function, using Dirichlet's hyperbola method.
# The partial sums of the gcd-sum function is defined as:
#
# a(n) = Sum_{k=1..n} Sum_{d|k} d*phi(k/d)
#
# where phi(k) is the Euler totient function.
# Also equivalent with:
# a(n) = Sum_{j=1..n} Sum_{i=1..j} gcd(i, j)
# Based on the formula:
# a(n) = (1/2)*Sum_{k=1..n} phi(k) * floor(n/k) * floor(1+n/k)
# Example:
# a(10^1) = 122
# a(10^2) = 18065
# a(10^3) = 2475190
# a(10^4) = 317257140
# a(10^5) = 38717197452
# a(10^6) = 4571629173912
# a(10^7) = 527148712519016
# a(10^8) = 59713873168012716
# a(10^9) = 6671288261316915052
# OEIS sequences:
# https://oeis.org/A272718 -- Partial sums of gcd-sum sequence A018804.
# https://oeis.org/A018804 -- Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n).
# See also:
# https://en.wikipedia.org/wiki/Dirichlet_hyperbola_method
# https://trizenx.blogspot.com/2018/11/partial-sums-of-arithmetical-functions.html
func partial_sums_of_gcd_sum_function(n) {
var s = n.isqrt
var euler_sum_lookup = [0]
var lookup_size = (2 + 2*n.iroot(3)**2)
var euler_phi_lookup = [0]
for k in (1 .. lookup_size) {
euler_sum_lookup[k] = (euler_sum_lookup[k-1] + (euler_phi_lookup[k] = k.euler_phi))
}
var seen = Hash()
func euler_phi_partial_sum(n) {
if (n <= lookup_size) {
return euler_sum_lookup[n]
}
if (seen.has(n)) {
return seen{n}
}
var s = n.isqrt
var T = n.faulhaber(1)
var A = sum(2..s, {|k|
__FUNC__(floor(n/k))
})
var B = sum(1 .. floor(n/s)-1, {|k|
(floor(n/k) - floor(n/(k+1))) * __FUNC__(k)
})
seen{n} = (T - A - B)
}
var A = sum(1..s, {|k|
var t = floor(n/k)
(k * euler_phi_partial_sum(t)) + (euler_phi_lookup[k] * t.faulhaber(1))
})
var T = s.faulhaber(1)
var C = euler_phi_partial_sum(s)
return (A - T*C)
}
say 20.of { partial_sums_of_gcd_sum_function(_) }
__END__
[0, 1, 4, 9, 17, 26, 41, 54, 74, 95, 122, 143, 183, 208, 247, 292, 340, 373, 436, 473]