-
Notifications
You must be signed in to change notification settings - Fork 0
/
is_extra_bfsw_pseudoprime.sf
210 lines (147 loc) · 6.39 KB
/
is_extra_bfsw_pseudoprime.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/ruby
# Author: Daniel "Trizen" Șuteu
# Date: 31 October 2023
# https://github.com/trizen
# A new primality test, using only the Lucas V sequence.
# This test is a simplification of the strengthen BPSW test:
# https://arxiv.org/abs/2006.14425
define USE_METHOD_A_STAR = false # true to use the A* method in finding (P,Q)
func partial_lucasVmod_pow2(P, Q, two_val, m, V1=2, V2=P, Q1=1, Q2=1) {
Q1 = mulmod(Q1, Q2, m)
Q2 = mulmod(Q1, Q, m)
V1 = mulsubmulmod(V1, V2, P, Q1, m)
Q2 = mulmod(Q2, Q1, m)
two_val.times {
V1 = mulsubmulmod(V1, V1, 2, Q2, m)
Q2 = mulmod(Q2, Q2, m)
}
return (V1, Q2)
}
func partial_lucasVmod(P, Q, bits, m, V1=2, V2=P, Q1=1, Q2=1) {
for bit in bits {
Q1 = mulmod(Q1, Q2, m)
if (bit) {
Q2 = mulmod(Q1, Q, m)
V1 = mulsubmulmod(V2, V1, P, Q1, m)
V2 = mulsubmulmod(V2, V2, 2, Q2, m)
}
else {
Q2 = Q1
V2 = mulsubmulmod(V2, V1, P, Q1, m)
V1 = mulsubmulmod(V1, V1, 2, Q2, m)
}
}
return (V1,V2,Q1,Q2)
}
func check_lucasV(P,Q,n,m) {
var b1 = n.bits
var b2 = n.inc.bits
var k = 0
if (b1.len == b2.len) {
k = b1.range.first{|i| b1[i] != b2[i] }
}
var(V1,V2,Q1,Q2) = partial_lucasVmod(P, Q, b1.first(k), m)
var(V1_a,Q2_a) = partial_lucasVmod_pow2(P, Q, b2.end - k, m, V1, V2, Q1, Q2)
V1_a.is_congruent(2*Q, m) || return false
Q2_a.is_congruent(Q*Q, m) || return false
var(V1_b,_,_,Q2_b) = partial_lucasVmod(P, Q, b1.slice(k), m, V1, V2, Q1, Q2)
V1_b.is_congruent(P,m) || return false
Q2_b.is_congruent(Q*kronecker(Q, m), m) || return false
return true
}
func findQ(N) {
for k in (2 .. Inf) {
var D = ((-1)**k * (2*k + 1))
var K = kronecker(D, N)
if (K.is_zero && gcd(D, N).is_between(2, N-1)) {
return nil
}
elsif ((k == 20) && N.is_square) {
return nil
}
return ((1-D)/4) if (K == -1)
}
}
func findP (N, Q) {
for P in (2..Inf) {
var D = (P*P - 4*Q)
var K = kronecker(D, N)
if (K == -1) {
return P
}
elsif (K.is_zero && gcd(D, N).is_between(2, N-1)) {
return nil
}
elsif ((P == 20) && N.is_square) {
return nil
}
}
}
func is_extra_bfsw_psp(n) {
n <= 1 && return false
n == 2 && return true
n.is_even && return false
var(P,Q)
if (USE_METHOD_A_STAR) {
P = 1
Q = findQ(n) \\ return false
if (Q == -1) {
P = 5
Q = 5
}
}
else { # this is faster
Q = -2
P = findP(n, Q) \\ return false
}
check_lucasV(P,Q,n,n)
}
say 25.by(is_extra_bfsw_psp)
assert([913, 150267335403, 430558874533, 14760229232131, 936916995253453].none(is_extra_bfsw_psp))
for n in (1..1e3) {
if (is_extra_bfsw_psp(n)) {
if (!n.is_prime) {
say "Counter-example: #{n}"
}
}
elsif (n.is_prime) {
say "Missed-prime: #{n}"
}
}
__END__
Inspired by the paper "Strengthening the Baillie-PSW primality test", I propose a simplified test based on Lucas V-pseudoprimes, that requires computing only the Lucas V sequence, making it faster than the full BPSW test, while being about as strong.
The first observation was that none of the 5 vpsp terms < 10^15 satisfy:
Q^(n+1) == Q^2 (mod n)
This gives us a simple test:
V_{n+1}(P,Q) == 2*Q (mod n)
Q^(n+1) == Q^2 (mod n)
where (P,Q) are selected using Method A*.
At very little additional computational cost (on average), we can make the test even stronger, by also checking:
V_n(P,Q) == P (mod n)
Notice that also none of the 5 vpsp terms < 10^15 satisfy the above congruence.
The trick for computing V_n with very little additional computational cost (on average), is to compute the partial value of the Lucas V sequence, using the most significant overlapping bits of n and n+1.
First we compute:
V_d(P,Q) mod n
where d is the "most significant overlapping binary part" of n and n+1.
For example, if n = 43, we have:
n = 101011_2
n+1 = 101100_2
The most significant overlapping bits of n and n+1 are: "101", therefore d = 101_2 = 5.
From V_d(P,Q) mod n, we compute V_{n+1}(P,Q) mod n, using the remaining bits of n+1: "100".
Notice that the remaining bits of n+1 always form a power of two, allowing us to optimize the computation of V_{n+1}(P,Q) mod n.
At this stage, we check the necessary congruences trying to return early:
V_{n+1}(P,Q) == 2*Q (mod n)
Q^(n+1) == Q^2 (mod n)
If the number passed the above congruences, we compute V_n(P,Q) mod n from V_d(P,Q) mod n, using the remaining bits of n: "011", then we check:
V_n(P,Q) == P (mod n)
Q^((n+1)/2) == Q*(Q|n) (mod n)
Finally, we return true if the number satisfied all the congruences, indicating that it is probably prime.
There are no known counter-examples to the presented test.
Remarks:
- For numbers of the form n = 4*x + 1, only the last last two bits differ from n and n+1, therefore only two extra steps in the "partial_lucasVmod()" function are needed to also compute V_n(P,Q) mod n, which is very cheap.
- On the other hand, for numbers of the form n = 2^k - 1, all the bits of n and n+1 are different, which makes the computation of V_n(P,Q) quite expensive. But we can use the Lucas-Lehmer test for such numbers.
- Numbers of the form x*2^k - 1, with x < 2^k, also take longer to check, but we can use the Lucas-Lehmer-Riesel (LLR) test for those.
Optimization ideas:
- To ensure that the test is always fast, we can skip the computation of V_n(P,Q) if the length of the remaining bits of n is too large (e.g. larger than the number of bits of d). This bounds the running time of the test to: 1.5 * (the cost of computing V_n(P,Q) mod n), while still having no known counter-examples.
- In the selection of parameters (P,Q), we can start with Q = -2 and finding the first P >= 2 that satisfies jacobi(P^2 - 4*Q, n) = -1. The reason being that it is faster for computers to multiply by powers of two, and thus it makes the computation of the Lucas V sequence a bit faster, since |Q| is a power of two and, most of the time, P is also a power of 2.
- In a general-purpose "is_prime(n)" function, for performance reasons, we should also do a little bit of trial-division (or gcd with primorials) and then a strong pseudoprime test to base 2, trying to return early if possible.