diff --git a/lean4/src/putnam_1994_a1.lean b/lean4/src/putnam_1994_a1.lean index 890908f4..e2465e97 100644 --- a/lean4/src/putnam_1994_a1.lean +++ b/lean4/src/putnam_1994_a1.lean @@ -6,7 +6,7 @@ open Filter Topology Suppose that a sequence $a_1,a_2,a_3,\dots$ satisfies $0 ∑ n : Set.Icc 1 N, a n) atTop (𝓝 s)) := -sorry + (a : ℕ → ℝ) + (ha : ∀ n ≥ 1, 0 < a n ∧ a n ≤ a (2 * n) + a (2 * n + 1)) : + Tendsto (fun N : ℕ => ∑ n : Set.Icc 1 N, a n) atTop atTop := + sorry diff --git a/lean4/src/putnam_1994_b3.lean b/lean4/src/putnam_1994_b3.lean index 16bfef66..7e71bcd1 100644 --- a/lean4/src/putnam_1994_b3.lean +++ b/lean4/src/putnam_1994_b3.lean @@ -7,9 +7,7 @@ abbrev putnam_1994_b3_solution : Set ℝ := sorry /-- Find the set of all real numbers $k$ with the following property: For any positive, differentiable function $f$ that satisfies $f'(x)>f(x)$ for all $x$, there is some number $N$ such that $f(x)>e^{kx}$ for all $x>N$. -/ -theorem putnam_1994_b3 -(k : ℝ) -(allfexN : Prop) -(hallfexN : allfexN = ∀ f : ℝ → ℝ, (f > 0 ∧ Differentiable ℝ f ∧ ∀ x : ℝ, deriv f x > f x) → (∃ N : ℝ, ∀ x > N, f x > Real.exp (k * x))) -: allfexN ↔ k ∈ putnam_1994_b3_solution := -sorry +theorem putnam_1994_b3 : + {k | ∀ f (hf : (∀ x, 0 < f x ∧ f x < deriv f x) ∧ Differentiable ℝ f), + ∃ N, ∀ x > N, Real.exp (k * x) < f x} = putnam_1994_b3_solution := + sorry diff --git a/lean4/src/putnam_2010_a5.lean b/lean4/src/putnam_2010_a5.lean index 4879a369..f7dc38ee 100644 --- a/lean4/src/putnam_2010_a5.lean +++ b/lean4/src/putnam_2010_a5.lean @@ -1,11 +1,14 @@ import Mathlib +open scoped Matrix + /-- Let $G$ be a group, with operation $*$. Suppose that \begin{enumerate} \item[(i)] $G$ is a subset of $\mathbb{R}^3$ (but $*$ need not be related to addition of vectors); \item[(ii)] For each $\mathbf{a},\mathbf{b} \in G$, either $\mathbf{a}\times \mathbf{b} = \mathbf{a}*\mathbf{b}$ or $\mathbf{a}\times \mathbf{b} = 0$ (or both), where $\times$ is the usual cross product in $\mathbb{R}^3$. \end{enumerate} Prove that $\mathbf{a} \times \mathbf{b} = 0$ for all $\mathbf{a}, \mathbf{b} \in G$. -/ theorem putnam_2010_a5 -(G : Set (Fin 3 → ℝ)) -(hGgrp : Group G) -(hGcross : ∀ a b : G, crossProduct a b = (a * b : Fin 3 → ℝ) ∨ crossProduct (a : Fin 3 → ℝ) b = 0) -: ∀ a b : G, crossProduct (a : Fin 3 → ℝ) b = 0 := -sorry + (G : Type*) [Group G] + (i : G ↪ (Fin 3 → ℝ)) + (h : ∀ a b, (i a) ×₃ (i b) = i (a * b) ∨ (i a) ×₃ (i b) = 0) + (a b : G) : + (i a) ×₃ (i b) = 0 := + sorry diff --git a/lean4/src/putnam_2020_b5.lean b/lean4/src/putnam_2020_b5.lean index 53b89a10..355ea92f 100644 --- a/lean4/src/putnam_2020_b5.lean +++ b/lean4/src/putnam_2020_b5.lean @@ -7,7 +7,7 @@ For $j \in \{1, 2, 3, 4\}$, let $z_j$ be a complex number with $|z_j| = 1$ and $ -/ theorem putnam_2020_b5 (z : Fin 4 → ℂ) -(hzle1 : ∀ n, ‖z n‖ < 1) +(hzle1 : ∀ n, ‖z n‖ = 1) (hzne1 : ∀ n, z n ≠ 1) : 3 - z 0 - z 1 - z 2 - z 3 + (z 0) * (z 1) * (z 2) * (z 3) ≠ 0:= sorry