diff --git a/lean4/src/putnam_1987_a5.lean b/lean4/src/putnam_1987_a5.lean index f6c9204..4e2ee3d 100644 --- a/lean4/src/putnam_1987_a5.lean +++ b/lean4/src/putnam_1987_a5.lean @@ -11,13 +11,15 @@ Let $\vec{G}(x,y)=\left(\frac{-y}{x^2+4y^2},\frac{x}{x^2+4y^2},0\right)$. Prove \end{enumerate} -/ theorem putnam_1987_a5 + (curl : ((Fin 3 → ℝ) → (Fin 3 → ℝ)) → ((Fin 3 → ℝ) → (Fin 3 → ℝ))) + (curl_def : ∀ f x, curl f x = ![ + fderiv ℝ f x (Pi.single 1 1) 2 - fderiv ℝ f x (Pi.single 2 1) 1, + fderiv ℝ f x (Pi.single 2 1) 0 - fderiv ℝ f x (Pi.single 0 1) 2, + fderiv ℝ f x (Pi.single 0 1) 1 - fderiv ℝ f x (Pi.single 1 1) 0]) (G : (Fin 2 → ℝ) → (Fin 3 → ℝ)) (G_def : ∀ x y, G ![x, y] = ![(-y / (x ^ 2 + 4 * y ^ 2)), (x / (x ^ 2 + 4 * y ^ 2)), 0]) : (∃ F : (Fin 3 → ℝ) → (Fin 3 → ℝ), ContDiffOn ℝ 1 F {v | v ≠ ![0,0,0]} ∧ - (∀ x, x ≠ 0 → - (fderiv ℝ F x (Pi.single 1 1) 2 - fderiv ℝ F x (Pi.single 2 1) 1 = 0 ∧ - fderiv ℝ F x (Pi.single 2 1) 0 - fderiv ℝ F x (Pi.single 0 1) 2 = 0 ∧ - fderiv ℝ F x (Pi.single 0 1) 1 - fderiv ℝ F x (Pi.single 1 1) 0 = 0)) ∧ + (∀ x, x ≠ 0 → curl F x = 0) ∧ ∀ x y, F ![x, y, 0] = G ![x, y]) ↔ putnam_1987_a5_solution := sorry