diff --git a/informal/putnam.json b/informal/putnam.json index ed8b2e23..e1fdaa2b 100644 --- a/informal/putnam.json +++ b/informal/putnam.json @@ -5044,7 +5044,7 @@ { "problem_name": "putnam_2022_a1", "informal_statement": "Determine all ordered pairs of real numbers $(a,b)$ such that the line $y = ax+b$ intersects the curve $y = \\ln(1+x^2)$ in exactly one point.", - "informal_solution": "Show that the solution is the set of ordered pairs $(a,b)$ which satisfy at least one of (1) $a = b = 0$, (2) $|a| \\geq 1$, and (3) $0 < |a| < 1$ and $b < \\log(1 - r_{-})^2 - |a|r_{-}$ or $b > \\log(1 + r_{+})^2 + |a|r_{+}$ where $r_{\\pm} = \\frac{1 \\pm \\sqrt{1 - a^2}}{a}$.", + "informal_solution": "Show that the solution is the set of ordered pairs $(a,b)$ which satisfy at least one of (1) $a = b = 0$, (2) $|a| \\geq 1$, and (3) $0 < |a| < 1$ and $b < \\log(1 + r_{-}^2) - ar_{-}$ or $b > \\log(1 + r_{+}^2) - ar_{+}$ where $r_{\\pm} = \\frac{1 \\pm \\sqrt{1 - a^2}}{a}$.", "tags": [ "algebra" ] diff --git a/lean4/src/putnam_1963_a3.lean b/lean4/src/putnam_1963_a3.lean index 07471de0..a16ea888 100644 --- a/lean4/src/putnam_1963_a3.lean +++ b/lean4/src/putnam_1963_a3.lean @@ -13,7 +13,8 @@ theorem putnam_1963_a3 (n : ℕ) (hn : 0 < n) (f y : ℝ → ℝ) - (hf : ContinuousOn f (Ici 1)) : - ContDiffOn ℝ n y (Ici 1) ∧ (∀ i < n, deriv^[i] y 1 = 0) ∧ (Ici 1).EqOn (P n y) f ↔ + (hf : ContinuousOn f (Ici 1)) + (hy : ContDiffOn ℝ n y (Ici 1)) : + (∀ i < n, deriv^[i] y 1 = 0) ∧ (Ici 1).EqOn (P n y) f ↔ ∀ x ≥ 1, y x = ∫ t in (1 : ℝ)..x, putnam_1963_a3_solution f n x t := sorry diff --git a/lean4/src/putnam_2009_b4.lean b/lean4/src/putnam_2009_b4.lean index 4cd7bea2..6e4c16cf 100644 --- a/lean4/src/putnam_2009_b4.lean +++ b/lean4/src/putnam_2009_b4.lean @@ -1,6 +1,6 @@ import Mathlib -open Topology MvPolynomial Filter Set Metric +open intervalIntegral MvPolynomial Real abbrev putnam_2009_b4_solution : ℕ := sorry -- 2020050 @@ -8,9 +8,10 @@ abbrev putnam_2009_b4_solution : ℕ := sorry Say that a polynomial with real coefficients in two variables, $x,y$, is \emph{balanced} if the average value of the polynomial on each circle centered at the origin is $0$. The balanced polynomials of degree at most $2009$ form a vector space $V$ over $\mathbb{R}$. Find the dimension of $V$. -/ theorem putnam_2009_b4 -(balanced : MvPolynomial (Fin 2) ℝ → Prop) -(hbalanced : balanced = fun P ↦ ∀ r > 0, (∫ x in Metric.sphere (0 : EuclideanSpace ℝ (Fin 2)) r, MvPolynomial.eval x P) / (2 * Real.pi * r) = 0) -(V : Set (MvPolynomial (Fin 2) ℝ)) [AddCommGroup V] [Module ℝ V] -(hV : ∀ P : MvPolynomial (Fin 2) ℝ, P ∈ V ↔ balanced P ∧ P.totalDegree ≤ 2009) -: (Module.rank V = putnam_2009_b4_solution) := -sorry + (IsBalanced : MvPolynomial (Fin 2) ℝ → Prop) + (IsBalanced_def : ∀ P, IsBalanced P ↔ ∀ r > 0, + (∫ t in (0 : ℝ)..(2 * π), eval ![r * cos t, r * sin t] P) / (2 * π * r) = 0) + (V : Submodule ℝ (MvPolynomial (Fin 2) ℝ)) + (V_def : ∀ P, P ∈ V ↔ IsBalanced P ∧ P.totalDegree ≤ 2009) : + Module.rank ℝ V = putnam_2009_b4_solution := + sorry diff --git a/lean4/src/putnam_2017_a2.lean b/lean4/src/putnam_2017_a2.lean index ec3b697b..35a5fa43 100644 --- a/lean4/src/putnam_2017_a2.lean +++ b/lean4/src/putnam_2017_a2.lean @@ -1,11 +1,14 @@ import Mathlib +open Polynomial + /-- Let $Q_0(x)=1$, $Q_1(x)=x$, and $Q_n(x)=\frac{(Q_{n-1}(x))^2-1}{Q_{n-2}(x)}$ for all $n \geq 2$. Show that, whenever $n$ is a positive integer, $Q_n(x)$ is equal to a polynomial with integer coefficients. -/ theorem putnam_2017_a2 -(Q : ℕ → ℝ → ℝ) -(hQbase : ∀ x : ℝ, Q 0 x = 1 ∧ Q 1 x = x) -(hQn : ∀ n ≥ 2, ∀ x : ℝ, Q n x = ((Q (n - 1) x) ^ 2 - 1) / Q (n - 2) x) -: ∀ n > 0, ∃ P : Polynomial ℝ, (∀ i : ℕ, P.coeff i = round (P.coeff i)) ∧ Q n = P.eval := -sorry + (Q : ℕ → RatFunc ℚ) + (hQbase : Q 0 = 1 ∧ Q 1 = (X : ℚ[X])) + (hQn : ∀ n, Q (n + 2) = (Q (n + 1) ^ 2 - 1) / Q n) + (n : ℕ) (hn : 0 < n) : + ∃ P : ℤ[X], Q n = P.map (Int.castRingHom ℚ) := + sorry diff --git a/lean4/src/putnam_2022_a1.lean b/lean4/src/putnam_2022_a1.lean index 89e1d356..c2553ed7 100644 --- a/lean4/src/putnam_2022_a1.lean +++ b/lean4/src/putnam_2022_a1.lean @@ -3,7 +3,7 @@ import Mathlib open Polynomial abbrev putnam_2022_a1_solution : Set (ℝ × ℝ) := sorry --- {(a, b) | (a = 0 ∧ b = 0) ∨ (|a| ≥ 1) ∨ (0 < |a| ∧ |a| < 1 ∧ (b < (Real.log (1 - (1 - Real.sqrt (1 - a^2))/a))^2 - |a| * (1 - Real.sqrt (1 - a^2))/a ∨ b > (Real.log (1 - (1 + Real.sqrt (1 - a^2))/a))^2 - |a| * (1 + Real.sqrt (1 - a^2))/a))} +-- {(a, b) | (a = 0 ∧ b = 0) ∨ 1 ≤ |a| ∨ (0 < |a| ∧ |a| < 1 ∧ letI rm := (1 - √(1 - a ^ 2)) / a; letI rp := (1 + √(1 - a ^ 2)) / a; (b < Real.log (1 + rm ^ 2) - a * rm ∨ b > Real.log (1 + rp ^ 2) - a * rp))} /-- Determine all ordered pairs of real numbers $(a,b)$ such that the line $y = ax+b$ intersects the curve $y = \ln(1+x^2)$ in exactly one point. -/