-
Notifications
You must be signed in to change notification settings - Fork 17
/
noise-contrastive-estimate.lua
318 lines (273 loc) · 11.3 KB
/
noise-contrastive-estimate.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
require 'paths'
require 'rnn'
require 'nngraph'
local dl = require 'dataload'
assert(nn.NCEModule and nn.NCEModule.version and nn.NCEModule.version >= 6, "update dpnn : luarocks install dpnn")
--[[ command line arguments ]]--
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a Language Model using stacked LSTM on Google Billion Words dataset')
cmd:text('Example:')
cmd:text("th noise-contrastive-estimate.lua --progress --earlystop 50 --cuda --device 2 --seqlen 20 --hiddensize '{200,200}' --batchsize 20 --startlr 1 --uniform 0.1 --cutoff 5 --schedule '{[5]=0.5,[6]=0.25,[7]=0.125,[8]=0.0625,[9]=0.03125,[10]=0.015625,[11]=0.0078125,[12]=0.00390625}'")
cmd:text("th examples/noise-contrastive-estimate.lua --cuda --trainsize 400000 --validsize 40000 --cutoff 10 --batchsize 128 --seqlen 100 --hiddensize '{250,250}' --progress --device 2")
cmd:text("th scripts/evaluate-rnnlm.lua --xplogpath /data/save/rnnlm/ptb:atlas:1458081269:1.t7 --cuda")
cmd:text('Options:')
-- training
cmd:option('--startlr', 0.05, 'learning rate at t=0')
cmd:option('--minlr', 0.00001, 'minimum learning rate')
cmd:option('--saturate', 400, 'epoch at which linear decayed LR will reach minlr')
cmd:option('--schedule', '', 'learning rate schedule. e.g. {[5] = 0.004, [6] = 0.001}')
cmd:option('--momentum', 0.9, 'momentum')
cmd:option('--maxnormout', -1, 'max l2-norm of each layer\'s output neuron weights')
cmd:option('--cutoff', -1, 'max l2-norm of concatenation of all gradParam tensors')
cmd:option('--cuda', false, 'use CUDA')
cmd:option('--device', 1, 'sets the device (GPU) to use')
cmd:option('--profile', false, 'profile updateOutput,updateGradInput and accGradParameters in Sequential')
cmd:option('--maxepoch', 1000, 'maximum number of epochs to run')
cmd:option('--earlystop', 50, 'maximum number of epochs to wait to find a better local minima for early-stopping')
cmd:option('--progress', false, 'print progress bar')
cmd:option('--silent', false, 'don\'t print anything to stdout')
cmd:option('--uniform', 0.1, 'initialize parameters using uniform distribution between -uniform and uniform. -1 means default initialization')
cmd:option('--k', 100, 'how many noise samples to use for NCE')
cmd:option('--continue', '', 'path to model for which training should be continued. Note that current options (except for device, cuda and tiny) will be ignored.')
cmd:option('--Z', 1, 'normalization constant for NCE module (-1 approximates it from first batch).')
cmd:option('--rownoise', false, 'sample k noise samples for each row for NCE module')
-- rnn layer
cmd:option('--seqlen', 50, 'sequence length : back-propagate through time (BPTT) for this many time-steps')
cmd:option('--inputsize', -1, 'size of lookup table embeddings. -1 defaults to hiddensize[1]')
cmd:option('--hiddensize', '{256,256}', 'number of hidden units used at output of each recurrent layer. When more than one is specified, LSTMS are stacked')
cmd:option('--projsize', -1, 'size of the projection layer (number of hidden cell units for LSTMP)')
cmd:option('--dropout', 0, 'ancelossy dropout with this probability after each rnn layer. dropout <= 0 disables it.')
-- data
cmd:option('--batchsize', 128, 'number of examples per batch')
cmd:option('--trainsize', 400000, 'number of train time-steps seen between each epoch')
cmd:option('--validsize', 40000, 'number of valid time-steps used for early stopping and cross-validation')
cmd:option('--savepath', paths.concat(dl.SAVE_PATH, 'rnnlm'), 'path to directory where experiment log (includes model) will be saved')
cmd:option('--id', '', 'id string of this experiment (used to name output file) (defaults to a unique id)')
cmd:option('--tiny', false, 'use train_tiny.th7 training file')
cmd:option('--dontsave', false, 'dont save the model')
cmd:text()
local opt = cmd:parse(arg or {})
opt.hiddensize = loadstring(" return "..opt.hiddensize)()
opt.schedule = loadstring(" return "..opt.schedule)()
opt.inputsize = opt.inputsize == -1 and opt.hiddensize[1] or opt.inputsize
opt.id = opt.id == '' and ('gbw' .. ':' .. dl.uniqueid()) or opt.id
opt.version = 6 -- better NCE bias initialization + new default hyper-params
if not opt.silent then
table.print(opt)
end
if opt.cuda then -- do this before building model to prevent segfault
require 'cunn'
cutorch.setDevice(opt.device)
end
local xplog, lm, criterion, targetmodule
if opt.continue ~= '' then
xplog = torch.load(opt.continue)
xplog.opt.cuda = opt.cuda
xplog.opt.device = opt.device
xplog.opt.tiny = opt.tiny
opt = xplog.opt
lm = xplog.model.module
-- prevent re-casting bug
for i,lookup in ipairs(lm:findModules('nn.LookupTableMaskZero')) do
lookup.__input = nil
end
criterion = xplog.criterion
targetmodule = xplog.targetmodule
assert(opt)
end
--[[ data set ]]--
local trainset, validset, testset = dl.loadGBW({opt.batchsize,opt.batchsize,opt.batchsize}, opt.tiny and 'train_tiny.th7' or nil)
if not opt.silent then
print("Vocabulary size : "..#trainset.ivocab)
print("Train set split into "..opt.batchsize.." sequences of length "..trainset:size())
end
--[[ language model ]]--
if not lm then
lm = nn.Sequential()
-- input layer (i.e. word embedding space)
local lookup = nn.LookupTableMaskZero(#trainset.ivocab, opt.inputsize)
lookup.maxnormout = -1 -- prevent weird maxnormout behaviour
lm:add(lookup) -- input is seqlen x batchsize
if opt.dropout > 0 then
lm:add(nn.Dropout(opt.dropout))
end
-- rnn layers
local inputsize = opt.inputsize
for i,hiddensize in ipairs(opt.hiddensize) do
-- this is a faster version of nn.Sequencer(nn.RecLSTM(inpusize, hiddensize))
local rnn = opt.projsize < 1 and nn.SeqLSTM(inputsize, hiddensize)
or nn.SeqLSTM(inputsize, opt.projsize, hiddensize) -- LSTM with a projection layer
lm:add(rnn:maskZero())
if opt.dropout > 0 then
lm:add(nn.Dropout(opt.dropout))
end
inputsize = hiddensize
end
lm:add(nn.SplitTable(1))
-- output layer
local unigram = trainset.wordfreq:float()
local ncemodule = nn.NCEModule(inputsize, #trainset.ivocab, opt.k, unigram, opt.Z)
ncemodule.batchnoise = not opt.rownoise
-- NCE requires {input, target} as inputs
lm = nn.Sequential()
:add(nn.ParallelTable()
:add(lm):add(nn.Identity()))
:add(nn.ZipTable()) -- {{x1,x2,...}, {t1,t2,...}} -> {{x1,t1},{x2,t2},...}
-- encapsulate stepmodule into a Sequencer
local nce = nn.Sequencer(nn.MaskZero(ncemodule))
lm:add(nce)
-- remember previous state between batches
lm:remember()
if opt.uniform > 0 then
for k,param in ipairs(lm:parameters()) do
param:uniform(-opt.uniform, opt.uniform)
end
ncemodule:reset()
end
end
if opt.profile then
lm:profile()
end
if not opt.silent then
print"Language Model:"
print(lm)
end
if not (criterion and targetmodule) then
--[[ loss function ]]--
local crit = nn.MaskZeroCriterion(nn.NCECriterion())
-- target is also seqlen x batchsize.
targetmodule = nn.SplitTable(1)
if opt.cuda then
targetmodule = nn.Sequential()
:add(nn.Convert())
:add(targetmodule)
end
criterion = nn.SequencerCriterion(crit)
end
--[[ CUDA ]]--
if opt.cuda then
lm:cuda()
criterion:cuda()
targetmodule:cuda()
end
--[[ experiment log ]]--
-- is saved to file every time a new validation minima is found
if not xplog then
xplog = {}
xplog.opt = opt -- save all hyper-parameters and such
xplog.dataset = 'GoogleBillionWords'
xplog.vocab = trainset.vocab
-- will only serialize params
xplog.model = lm:sharedClone()
xplog.criterion = criterion
xplog.targetmodule = targetmodule
-- keep a log of NLL for each epoch
xplog.trainnceloss = {}
xplog.valnceloss = {}
-- will be used for early-stopping
xplog.minvalnceloss = 99999999
xplog.epoch = 0
paths.mkdir(opt.savepath)
end
local ntrial = 0
local zeroMask
local epoch = xplog.epoch+1
opt.lr = opt.lr or opt.startlr
opt.trainsize = opt.trainsize == -1 and trainset:size() or opt.trainsize
opt.validsize = opt.validsize == -1 and validset:size() or opt.validsize
while opt.maxepoch <= 0 or epoch <= opt.maxepoch do
print("")
print("Epoch #"..epoch.." :")
-- 1. training
local a = torch.Timer()
lm:training()
local sumErr = 0
for i, inputs, targets in trainset:subiter(opt.seqlen, opt.trainsize) do
targets = targetmodule:forward(targets)
inputs = {inputs, targets}
-- zero-mask
zeroMask = nn.utils.getZeroMaskSequence(inputs[1], zeroMask)
nn.utils.setZeroMask({criterion, lm}, zeroMask, opt.cuda)
-- forward
local outputs = lm:forward(inputs)
local err = criterion:forward(outputs, targets)
sumErr = sumErr + err
-- backward
local gradOutputs = criterion:backward(outputs, targets)
lm:zeroGradParameters()
lm:backward(inputs, gradOutputs)
-- update
if opt.cutoff > 0 then
local norm = lm:gradParamClip(opt.cutoff) -- affects gradParams
opt.meanNorm = opt.meanNorm and (opt.meanNorm*0.9 + norm*0.1) or norm
end
lm:updateGradParameters(opt.momentum) -- affects gradParams
lm:updateParameters(opt.lr) -- affects params
lm:maxParamNorm(opt.maxnormout) -- affects params
if opt.progress then
xlua.progress(i, opt.trainsize)
end
if i % 2000 == 0 then
collectgarbage()
end
end
-- learning rate decay
if opt.schedule then
opt.lr = opt.schedule[epoch] or opt.lr
else
opt.lr = opt.lr + (opt.minlr - opt.startlr)/opt.saturate
end
opt.lr = math.max(opt.minlr, opt.lr)
if not opt.silent then
print("learning rate", opt.lr)
if opt.meanNorm then
print("mean gradParam norm", opt.meanNorm)
end
end
if cutorch then cutorch.synchronize() end
local speed = opt.trainsize*opt.batchsize/a:time().real
print(string.format("Speed : %f words/second; %f ms/word", speed, 1000/speed))
local nceloss = sumErr/opt.trainsize
print("Training error : "..nceloss)
xplog.trainnceloss[epoch] = nceloss
-- 2. cross-validation
lm:evaluate()
local sumErr = 0
for i, inputs, targets in validset:subiter(opt.seqlen, opt.validsize) do
targets = targetmodule:forward(targets)
-- zero-mask
zeroMask = nn.utils.getZeroMaskSequence(inputs, zeroMask)
nn.utils.setZeroMask({criterion, lm}, zeroMask, opt.cuda)
-- forward
local outputs = lm:forward{inputs, targets}
local err = criterion:forward(outputs, targets)
sumErr = sumErr + err
if opt.progress then
xlua.progress(i, opt.validsize)
end
end
local nceloss = sumErr/opt.validsize
print("Validation error : "..nceloss)
xplog.valnceloss[epoch] = nceloss
ntrial = ntrial + 1
-- early-stopping
if nceloss < xplog.minvalnceloss then
-- save best version of model
xplog.minvalnceloss = nceloss
xplog.epoch = epoch
local filename = paths.concat(opt.savepath, opt.id..'.t7')
if not opt.dontsave then
print("Found new minima. Saving to "..filename)
torch.save(filename, xplog)
end
ntrial = 0
elseif ntrial >= opt.earlystop then
print("No new minima found after "..ntrial.." epochs.")
print("Stopping experiment.")
print("Best model can be found in "..paths.concat(opt.savepath, opt.id..'.t7'))
os.exit()
end
collectgarbage()
epoch = epoch + 1
end